Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from paddleocr import PaddleOCR
|
3 |
+
import numpy as np
|
4 |
+
import openai
|
5 |
+
import os
|
6 |
+
from langdetect import detect
|
7 |
+
|
8 |
+
# Initialize PaddleOCR
|
9 |
+
ocr_reader = PaddleOCR(use_angle_cls=True, lang='en')
|
10 |
+
|
11 |
+
# Initialize Whisper Model via Hugging Face Transformers
|
12 |
+
from transformers import pipeline
|
13 |
+
whisper_model = pipeline(
|
14 |
+
task="automatic-speech-recognition",
|
15 |
+
model="openai/whisper-small",
|
16 |
+
device=0
|
17 |
+
)
|
18 |
+
|
19 |
+
# Set your OpenAI API Key (you should set this securely in your environment)
|
20 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
21 |
+
|
22 |
+
def detect_language(text):
|
23 |
+
try:
|
24 |
+
lang = detect(text)
|
25 |
+
except:
|
26 |
+
lang = "unknown"
|
27 |
+
return lang
|
28 |
+
|
29 |
+
def gpt_clean_and_translate(text, target_language):
|
30 |
+
if not text.strip():
|
31 |
+
return "No text detected.", ""
|
32 |
+
|
33 |
+
prompt = f"""
|
34 |
+
You are an expert document reader and translator. You will receive a noisy extracted text from a government ID. Your tasks:
|
35 |
+
|
36 |
+
1. Identify and extract these fields: Name, Address, Date of Birth, Expiry Date, Class, Sex.
|
37 |
+
2. Output the information in full English sentences.
|
38 |
+
3. Translate the full text into {target_language}.
|
39 |
+
If the target language is English, just output clean English sentences.
|
40 |
+
"""
|
41 |
+
|
42 |
+
response = openai.ChatCompletion.create(
|
43 |
+
model="gpt-4o",
|
44 |
+
messages=[
|
45 |
+
{"role": "system", "content": prompt},
|
46 |
+
{"role": "user", "content": text}
|
47 |
+
],
|
48 |
+
temperature=0.2
|
49 |
+
)
|
50 |
+
|
51 |
+
cleaned_translation = response["choices"][0]["message"]["content"].strip()
|
52 |
+
return cleaned_translation
|
53 |
+
|
54 |
+
def process_document(image, target_language, language_group):
|
55 |
+
if not isinstance(image, np.ndarray):
|
56 |
+
image = np.array(image)
|
57 |
+
|
58 |
+
# OCR - Text Extraction using PaddleOCR
|
59 |
+
ocr_result = ocr_reader.ocr(image)
|
60 |
+
|
61 |
+
extracted_texts = []
|
62 |
+
for line in ocr_result[0]:
|
63 |
+
text = line[1][0]
|
64 |
+
extracted_texts.append(text)
|
65 |
+
|
66 |
+
extracted_text = " ".join(extracted_texts)
|
67 |
+
|
68 |
+
# Language Detection
|
69 |
+
source_language = detect_language(extracted_text)
|
70 |
+
|
71 |
+
# GPT Cleaning and Translation
|
72 |
+
translation = gpt_clean_and_translate(extracted_text, target_language)
|
73 |
+
|
74 |
+
return extracted_text, source_language, translation
|
75 |
+
|
76 |
+
def process_audio(audio, target_language):
|
77 |
+
# Speech Recognition
|
78 |
+
result = whisper_model(audio)
|
79 |
+
extracted_text = result['text']
|
80 |
+
|
81 |
+
# Language Detection
|
82 |
+
source_language = detect_language(extracted_text)
|
83 |
+
|
84 |
+
# GPT Cleaning and Translation
|
85 |
+
translation = gpt_clean_and_translate(extracted_text, target_language)
|
86 |
+
|
87 |
+
return extracted_text, source_language, translation
|
88 |
+
|
89 |
+
# Gradio Interface
|
90 |
+
document_interface = gr.Interface(
|
91 |
+
fn=process_document,
|
92 |
+
inputs=[
|
93 |
+
gr.Image(type="pil", label="Upload a Document Image (e.g., Passport, ID, Government Form)"),
|
94 |
+
gr.Radio(choices=["English", "Arabic"], label="Translate To"),
|
95 |
+
gr.Dropdown(choices=["Arabic", "Russian", "Other (French, English)"], label="Document Language Group")
|
96 |
+
],
|
97 |
+
outputs=[
|
98 |
+
gr.Textbox(label="Extracted Text"),
|
99 |
+
gr.Textbox(label="Detected Source Language"),
|
100 |
+
gr.Textbox(label="Translated and Structured Text")
|
101 |
+
],
|
102 |
+
title="🚨 Police Vision & Translator - Document Scanner",
|
103 |
+
description="Upload an image document. The system will auto-detect the source language and generate clean translated output."
|
104 |
+
)
|
105 |
+
|
106 |
+
audio_interface = gr.Interface(
|
107 |
+
fn=process_audio,
|
108 |
+
inputs=[
|
109 |
+
gr.Audio(type="filepath", label="Record Audio (max 30 sec)"),
|
110 |
+
gr.Radio(choices=["English", "Arabic"], label="Translate To")
|
111 |
+
],
|
112 |
+
outputs=[
|
113 |
+
gr.Textbox(label="Transcribed Text"),
|
114 |
+
gr.Textbox(label="Detected Source Language"),
|
115 |
+
gr.Textbox(label="Translated and Structured Text")
|
116 |
+
],
|
117 |
+
title="🚨 Police Vision & Translator - Voice Translator",
|
118 |
+
description="Record audio. The system will auto-detect the source language and generate clean translated output."
|
119 |
+
)
|
120 |
+
|
121 |
+
# Combine the Interfaces
|
122 |
+
app = gr.TabbedInterface(
|
123 |
+
[document_interface, audio_interface],
|
124 |
+
["Document Translator", "Voice Translator"]
|
125 |
+
)
|
126 |
+
|
127 |
+
if __name__ == "__main__":
|
128 |
+
app.launch(share=True)
|