Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# police_vision_translator.py
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer, AutoProcessor, AutoModelForSpeechSeq2Seq
|
4 |
+
from transformers import AutoModelForVision2Seq, ViTImageProcessor
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image, ImageDraw, ImageFont
|
8 |
+
import os
|
9 |
+
import tempfile
|
10 |
+
import cv2
|
11 |
+
|
12 |
+
# Initialize models
|
13 |
+
print("Loading models...")
|
14 |
+
|
15 |
+
# 1. Vision Document Analysis model
|
16 |
+
document_processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224")
|
17 |
+
document_model = AutoModelForVision2Seq.from_pretrained("Salesforce/blip-image-captioning-large")
|
18 |
+
|
19 |
+
# 2. OCR for text extraction
|
20 |
+
ocr_processor = AutoProcessor.from_pretrained("microsoft/trocr-base-printed")
|
21 |
+
ocr_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/trocr-base-printed")
|
22 |
+
|
23 |
+
# 3. Translation model
|
24 |
+
translator_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
|
25 |
+
translator_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
26 |
+
|
27 |
+
# 4. Speech recognition
|
28 |
+
speech_recognizer = pipeline("automatic-speech-recognition", model="openai/whisper-medium")
|
29 |
+
|
30 |
+
# 5. Text-to-speech
|
31 |
+
tts_model = AutoModelForSpeechSeq2Seq.from_pretrained("microsoft/speecht5_tts")
|
32 |
+
tts_processor = AutoProcessor.from_pretrained("microsoft/speecht5_tts")
|
33 |
+
|
34 |
+
print("Models loaded!")
|
35 |
+
|
36 |
+
# Language codes mapping
|
37 |
+
LANGUAGE_CODES = {
|
38 |
+
"English": "eng_Latn",
|
39 |
+
"Arabic": "ara_Arab",
|
40 |
+
"Hindi": "hin_Deva",
|
41 |
+
"Urdu": "urd_Arab",
|
42 |
+
"Chinese": "zho_Hans",
|
43 |
+
"Russian": "rus_Cyrl",
|
44 |
+
"French": "fra_Latn",
|
45 |
+
"German": "deu_Latn",
|
46 |
+
"Spanish": "spa_Latn",
|
47 |
+
"Japanese": "jpn_Jpan"
|
48 |
+
}
|
49 |
+
|
50 |
+
def detect_document_type(image):
|
51 |
+
"""Detect what type of document is in the image"""
|
52 |
+
# Use vision model to get general description
|
53 |
+
inputs = document_processor(images=image, return_tensors="pt")
|
54 |
+
outputs = document_model.generate(**inputs, max_length=50)
|
55 |
+
|
56 |
+
# Convert output IDs to text
|
57 |
+
description = document_model.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
58 |
+
|
59 |
+
# Simple rule-based classification
|
60 |
+
if "passport" in description.lower():
|
61 |
+
return "Passport"
|
62 |
+
elif "license" in description.lower() or "driving" in description.lower():
|
63 |
+
return "Driver's License"
|
64 |
+
elif "id" in description.lower() or "identity" in description.lower() or "card" in description.lower():
|
65 |
+
return "ID Card"
|
66 |
+
else:
|
67 |
+
return "Unknown Document"
|
68 |
+
|
69 |
+
def extract_text_from_regions(image, regions):
|
70 |
+
"""Extract text from specific regions of the document"""
|
71 |
+
results = {}
|
72 |
+
img_array = np.array(image)
|
73 |
+
|
74 |
+
for field_name, (x1, y1, x2, y2) in regions.items():
|
75 |
+
# Extract region
|
76 |
+
region = img_array[y1:y2, x1:x2]
|
77 |
+
region_pil = Image.fromarray(region)
|
78 |
+
|
79 |
+
# Process with OCR
|
80 |
+
inputs = ocr_processor(images=region_pil, return_tensors="pt")
|
81 |
+
generated_ids = ocr_model.generate(inputs["pixel_values"])
|
82 |
+
text = ocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
83 |
+
|
84 |
+
results[field_name] = text
|
85 |
+
|
86 |
+
return results
|
87 |
+
|
88 |
+
def translate_text(text, source_lang, target_lang):
|
89 |
+
"""Translate text between languages"""
|
90 |
+
if not text or text.strip() == "":
|
91 |
+
return ""
|
92 |
+
|
93 |
+
# Get language codes
|
94 |
+
src_code = LANGUAGE_CODES.get(source_lang, "eng_Latn")
|
95 |
+
tgt_code = LANGUAGE_CODES.get(target_lang, "ara_Arab")
|
96 |
+
|
97 |
+
# Tokenize
|
98 |
+
inputs = translator_tokenizer(text, return_tensors="pt", padding=True)
|
99 |
+
|
100 |
+
# Translate
|
101 |
+
translated_tokens = translator_model.generate(
|
102 |
+
**inputs,
|
103 |
+
forced_bos_token_id=translator_tokenizer.lang_code_to_id[tgt_code],
|
104 |
+
max_length=128
|
105 |
+
)
|
106 |
+
|
107 |
+
# Decode
|
108 |
+
translation = translator_tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
109 |
+
return translation
|
110 |
+
|
111 |
+
def process_document(image, source_language="English", target_language="Arabic"):
|
112 |
+
"""Main function to process document images"""
|
113 |
+
# Convert to PIL if it's not already
|
114 |
+
if not isinstance(image, Image.Image):
|
115 |
+
image = Image.fromarray(image)
|
116 |
+
|
117 |
+
# 1. Detect document type
|
118 |
+
doc_type = detect_document_type(image)
|
119 |
+
|
120 |
+
# 2. Define regions based on document type (simplified example)
|
121 |
+
# In a real implementation, you would use ML to detect these regions
|
122 |
+
width, height = image.size
|
123 |
+
|
124 |
+
if doc_type == "Passport":
|
125 |
+
regions = {
|
126 |
+
"Name": (int(width*0.3), int(height*0.2), int(width*0.9), int(height*0.3)),
|
127 |
+
"Date of Birth": (int(width*0.3), int(height*0.35), int(width*0.7), int(height*0.45)),
|
128 |
+
"Passport Number": (int(width*0.3), int(height*0.5), int(width*0.7), int(height*0.6))
|
129 |
+
}
|
130 |
+
elif doc_type == "ID Card":
|
131 |
+
regions = {
|
132 |
+
"Name": (int(width*0.3), int(height*0.15), int(width*0.9), int(height*0.25)),
|
133 |
+
"ID Number": (int(width*0.3), int(height*0.3), int(width*0.7), int(height*0.4)),
|
134 |
+
"Address": (int(width*0.1), int(height*0.5), int(width*0.9), int(height*0.7))
|
135 |
+
}
|
136 |
+
else: # Driver's License or Unknown
|
137 |
+
regions = {
|
138 |
+
"Name": (int(width*0.3), int(height*0.2), int(width*0.9), int(height*0.3)),
|
139 |
+
"License Number": (int(width*0.3), int(height*0.4), int(width*0.7), int(height*0.5)),
|
140 |
+
"Expiration": (int(width*0.3), int(height*0.6), int(width*0.7), int(height*0.7))
|
141 |
+
}
|
142 |
+
|
143 |
+
# 3. Extract text from regions
|
144 |
+
extracted_info = extract_text_from_regions(image, regions)
|
145 |
+
|
146 |
+
# 4. Translate extracted text
|
147 |
+
translated_info = {}
|
148 |
+
for field, text in extracted_info.items():
|
149 |
+
translated_info[field] = translate_text(text, source_language, target_language)
|
150 |
+
|
151 |
+
# 5. Create annotated image
|
152 |
+
annotated_img = image.copy()
|
153 |
+
draw = ImageDraw.Draw(annotated_img)
|
154 |
+
|
155 |
+
# Attempt to load a font that supports Arabic
|
156 |
+
try:
|
157 |
+
font = ImageFont.truetype("arial.ttf", 20) # Fallback to system font
|
158 |
+
except IOError:
|
159 |
+
font = ImageFont.load_default()
|
160 |
+
|
161 |
+
# Draw boxes and translations
|
162 |
+
for field, (x1, y1, x2, y2) in regions.items():
|
163 |
+
# Draw rectangle around region
|
164 |
+
draw.rectangle([(x1, y1), (x2, y2)], outline="green", width=3)
|
165 |
+
|
166 |
+
# Draw field name and translated text
|
167 |
+
draw.text((x1, y1-25), field, fill="blue", font=font)
|
168 |
+
draw.text((x1, y2+5), f"{extracted_info[field]} → {translated_info[field]}",
|
169 |
+
fill="red", font=font)
|
170 |
+
|
171 |
+
# Return results
|
172 |
+
return {
|
173 |
+
"document_type": doc_type,
|
174 |
+
"annotated_image": annotated_img,
|
175 |
+
"extracted_text": extracted_info,
|
176 |
+
"translated_text": translated_info
|
177 |
+
}
|
178 |
+
|
179 |
+
def transcribe_speech(audio_file, source_language="English"):
|
180 |
+
"""Transcribe speech from audio file"""
|
181 |
+
result = speech_recognizer(audio_file, generate_kwargs={"language": source_language.lower()})
|
182 |
+
return result["text"]
|
183 |
+
|
184 |
+
def translate_speech(audio_file, source_language="English", target_language="Arabic"):
|
185 |
+
"""Transcribe and translate speech"""
|
186 |
+
# 1. Transcribe speech to text
|
187 |
+
transcription = transcribe_speech(audio_file, source_language)
|
188 |
+
|
189 |
+
# 2. Translate text
|
190 |
+
translation = translate_text(transcription, source_language, target_language)
|
191 |
+
|
192 |
+
return {
|
193 |
+
"original_text": transcription,
|
194 |
+
"translated_text": translation
|
195 |
+
}
|
196 |
+
|
197 |
+
# Gradio Interface
|
198 |
+
def create_ui():
|
199 |
+
with gr.Blocks(title="Police Vision Translator") as app:
|
200 |
+
gr.Markdown("# Dubai Police Vision Translator System")
|
201 |
+
gr.Markdown("## Translate documents, environmental text, and speech in real-time")
|
202 |
+
|
203 |
+
with gr.Tab("Document Translation"):
|
204 |
+
with gr.Row():
|
205 |
+
with gr.Column():
|
206 |
+
doc_input = gr.Image(type="pil", label="Upload Document")
|
207 |
+
source_lang = gr.Dropdown(choices=list(LANGUAGE_CODES.keys()),
|
208 |
+
value="English", label="Source Language")
|
209 |
+
target_lang = gr.Dropdown(choices=list(LANGUAGE_CODES.keys()),
|
210 |
+
value="Arabic", label="Target Language")
|
211 |
+
process_btn = gr.Button("Process Document")
|
212 |
+
|
213 |
+
with gr.Column():
|
214 |
+
doc_output = gr.Image(label="Annotated Document")
|
215 |
+
doc_type = gr.Textbox(label="Document Type")
|
216 |
+
extracted_json = gr.JSON(label="Extracted Information")
|
217 |
+
translated_json = gr.JSON(label="Translated Information")
|
218 |
+
|
219 |
+
process_btn.click(
|
220 |
+
fn=lambda img, src, tgt: process_document(img, src, tgt),
|
221 |
+
inputs=[doc_input, source_lang, target_lang],
|
222 |
+
outputs=[doc_output, doc_type, extracted_json, translated_json]
|
223 |
+
)
|
224 |
+
|
225 |
+
with gr.Tab("Speech Translation"):
|
226 |
+
with gr.Row():
|
227 |
+
with gr.Column():
|
228 |
+
audio_input = gr.Audio(type="filepath", label="Record Speech")
|
229 |
+
speech_source_lang = gr.Dropdown(choices=list(LANGUAGE_CODES.keys()),
|
230 |
+
value="English", label="Source Language")
|
231 |
+
speech_target_lang = gr.Dropdown(choices=list(LANGUAGE_CODES.keys()),
|
232 |
+
value="Arabic", label="Target Language")
|
233 |
+
translate_btn = gr.Button("Translate Speech")
|
234 |
+
|
235 |
+
with gr.Column():
|
236 |
+
original_text = gr.Textbox(label="Original Speech")
|
237 |
+
translated_text = gr.Textbox(label="Translated Text")
|
238 |
+
|
239 |
+
translate_btn.click(
|
240 |
+
fn=lambda audio, src, tgt: translate_speech(audio, src, tgt),
|
241 |
+
inputs=[audio_input, speech_source_lang, speech_target_lang],
|
242 |
+
outputs=[original_text, translated_text]
|
243 |
+
)
|
244 |
+
|
245 |
+
with gr.Tab("About"):
|
246 |
+
gr.Markdown("""
|
247 |
+
# Police Vision Translator MVP
|
248 |
+
|
249 |
+
This system demonstrates AI-powered translation capabilities for law enforcement:
|
250 |
+
|
251 |
+
- **Document Translation**: Identify and translate key fields in passports, IDs, and licenses
|
252 |
+
- **Speech Translation**: Real-time translation of conversations with civilians
|
253 |
+
|
254 |
+
## Technologies Used
|
255 |
+
|
256 |
+
- Vision Transformers for document analysis
|
257 |
+
- NLLB-200 for translation between 200+ languages
|
258 |
+
- Whisper for multilingual speech recognition
|
259 |
+
- SpeechT5 for text-to-speech synthesis
|
260 |
+
|
261 |
+
Developed for demonstration at the World AI Expo Dubai.
|
262 |
+
""")
|
263 |
+
|
264 |
+
return app
|
265 |
+
|
266 |
+
# Launch app
|
267 |
+
if __name__ == "__main__":
|
268 |
+
demo = create_ui()
|
269 |
+
demo.launch()
|