Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,82 +1,145 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import matplotlib.pyplot as plt
|
3 |
-
import pandas as pd
|
4 |
-
import neurokit2 as nk
|
5 |
-
import cv2
|
6 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
except ImportError as e:
|
11 |
-
raise ImportError(f"Failed to import ecg_image_kit: {str(e)}. Ensure the ecg_image_kit directory is included.")
|
12 |
|
13 |
-
def
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
def
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
image.save(image_path)
|
42 |
-
time_series = load_and_digitize_ecg(image_path)
|
43 |
-
if isinstance(time_series, str):
|
44 |
-
return time_series, None
|
45 |
-
results = analyze_ecg(time_series, sampling_rate=250)
|
46 |
-
if isinstance(results, str):
|
47 |
-
return results, None
|
48 |
-
plots = []
|
49 |
-
tables = []
|
50 |
-
for lead, data in results.items():
|
51 |
-
fig, ax = plt.subplots()
|
52 |
-
signals = data["signals"]
|
53 |
-
info = data["info"]
|
54 |
-
ax.plot(signals["ECG_Clean"], label="Clean ECG")
|
55 |
-
ax.plot(info["ECG_R_Peaks"], signals["ECG_Clean"][info["ECG_R_Peaks"]], "ro", label="R-peaks")
|
56 |
-
ax.set_title(f"{lead} ECG")
|
57 |
-
ax.legend()
|
58 |
-
plots.append(fig)
|
59 |
-
analysis = data["analysis"]
|
60 |
-
table = pd.DataFrame({
|
61 |
-
"Feature": ["Heart Rate (Mean)", "ECG Quality"],
|
62 |
-
"Value": [analysis.get("ECG_Rate_Mean", "N/A"), analysis.get("ECG_Quality_Mean", "N/A")]
|
63 |
-
})
|
64 |
-
tables.append(table)
|
65 |
-
os.remove(image_path)
|
66 |
-
return plots, tables
|
67 |
-
except Exception as e:
|
68 |
-
return f"Error processing image: {str(e)}", None
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
]
|
77 |
-
|
78 |
-
|
79 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
if __name__ ==
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import tensorflow as tf
|
6 |
+
from tensorflow.keras.models import load_model
|
7 |
+
from flask import Flask, request, render_template
|
8 |
+
from werkzeug.utils import secure_filename
|
9 |
+
import biosppy.signals.ecg as ecg
|
10 |
+
|
11 |
+
app = Flask(__name__)
|
12 |
+
|
13 |
+
UPLOAD_FOLDER = 'uploads'
|
14 |
+
ALLOWED_EXTENSIONS = {'csv', 'png', 'jpg', 'jpeg'}
|
15 |
+
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
16 |
+
|
17 |
+
# Load the pre-trained model
|
18 |
+
model = load_model('ecgScratchEpoch2.hdf5')
|
19 |
|
20 |
+
def allowed_file(filename):
|
21 |
+
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
|
|
|
|
22 |
|
23 |
+
def image_to_signal(image_path):
|
24 |
+
# Read and preprocess the image
|
25 |
+
img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
|
26 |
+
if img is None:
|
27 |
+
raise ValueError("Failed to load image")
|
28 |
+
|
29 |
+
# Resize to a standard height for consistency (e.g., 500 pixels)
|
30 |
+
img = cv2.resize(img, (1000, 500))
|
31 |
+
|
32 |
+
# Apply thresholding to isolate the waveform
|
33 |
+
_, binary = cv2.threshold(img, 200, 255, cv2.THRESH_BINARY_INV)
|
34 |
+
|
35 |
+
# Find contours of the waveform
|
36 |
+
contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
37 |
+
if not contours:
|
38 |
+
raise ValueError("No waveform detected in the image")
|
39 |
+
|
40 |
+
# Assume the largest contour is the ECG waveform
|
41 |
+
contour = max(contours, key=cv2.contourArea)
|
42 |
+
|
43 |
+
# Extract y-coordinates (signal amplitude) along x-axis
|
44 |
+
signal = []
|
45 |
+
width = img.shape[1]
|
46 |
+
for x in range(width):
|
47 |
+
column = contour[contour[:, :, 0] == x]
|
48 |
+
if len(column) > 0:
|
49 |
+
# Take the average y-coordinate if multiple points exist
|
50 |
+
y = np.mean(column[:, :, 1])
|
51 |
+
signal.append(y)
|
52 |
+
else:
|
53 |
+
# Interpolate if no point is found
|
54 |
+
signal.append(signal[-1] if signal else 0)
|
55 |
+
|
56 |
+
# Normalize signal to match expected amplitude range
|
57 |
+
signal = np.array(signal)
|
58 |
+
signal = (signal - np.min(signal)) / (np.max(signal) - np.min(signal)) * 1000
|
59 |
+
|
60 |
+
# Save to CSV
|
61 |
+
csv_path = os.path.join(app.config['UPLOAD_FOLDER'], 'converted_signal.csv')
|
62 |
+
df = pd.DataFrame(signal, columns=[' Sample Value'])
|
63 |
+
df.to_csv(csv_path, index=False)
|
64 |
+
|
65 |
+
return csv_path
|
66 |
|
67 |
+
def model_predict(uploaded_files, model):
|
68 |
+
output = []
|
69 |
+
for path in uploaded_files:
|
70 |
+
APC, NORMAL, LBB, PVC, PAB, RBB, VEB = [], [], [], [], [], [], []
|
71 |
+
output.append(str(path))
|
72 |
+
result = {"APC": APC, "Normal": NORMAL, "LBB": LBB, "PAB": PAB, "PVC": PVC, "RBB": RBB, "VEB": VEB}
|
73 |
+
|
74 |
+
kernel = np.ones((4,4), np.uint8)
|
75 |
+
csv = pd.read_csv(path)
|
76 |
+
csv_data = csv[' Sample Value']
|
77 |
+
data = np.array(csv_data)
|
78 |
+
signals = []
|
79 |
+
count = 1
|
80 |
+
peaks = ecg.christov_segmenter(signal=data, sampling_rate=200)[0]
|
81 |
+
indices = []
|
82 |
+
|
83 |
+
for i in peaks[1:-1]:
|
84 |
+
diff1 = abs(peaks[count - 1] - i)
|
85 |
+
diff2 = abs(peaks[count + 1] - i)
|
86 |
+
x = peaks[count - 1] + diff1 // 2
|
87 |
+
y = peaks[count + 1] - diff2 // 2
|
88 |
+
signal = data[x:y]
|
89 |
+
signals.append(signal)
|
90 |
+
count += 1
|
91 |
+
indices.append((x, y))
|
92 |
+
|
93 |
+
for signal, index in zip(signals, indices):
|
94 |
+
if len(signal) > 10:
|
95 |
+
img = np.zeros((128, 128))
|
96 |
+
for i in range(len(signal)):
|
97 |
+
img[i, int(signal[i] / 10)] = 255
|
98 |
+
img = cv2.dilate(img, kernel, iterations=1)
|
99 |
+
img = img.reshape(128, 128, 1)
|
100 |
+
prediction = model.predict(np.array([img])).argmax()
|
101 |
+
classes = ['Normal', 'APC', 'LBB', 'PAB', 'PVC', 'RBB', 'VEB']
|
102 |
+
result[classes[prediction]].append(index)
|
103 |
+
|
104 |
+
output.append(result)
|
105 |
+
|
106 |
+
return output
|
107 |
|
108 |
+
@app.route('/', methods=['GET'])
|
109 |
+
def index():
|
110 |
+
return render_template('index.html')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
+
@app.route('/', methods=['POST'])
|
113 |
+
def upload_file():
|
114 |
+
if 'files[]' not in request.files:
|
115 |
+
return render_template('index.html', message='No file part')
|
116 |
+
|
117 |
+
files = request.files.getlist('files[]')
|
118 |
+
file_paths = []
|
119 |
+
|
120 |
+
for file in files:
|
121 |
+
if file and allowed_file(file.filename):
|
122 |
+
filename = secure_filename(file.filename)
|
123 |
+
file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
|
124 |
+
file.save(file_path)
|
125 |
+
|
126 |
+
# If the file is an image, convert to CSV
|
127 |
+
if filename.rsplit('.', 1)[1].lower() in {'png', 'jpg', 'jpeg'}:
|
128 |
+
try:
|
129 |
+
csv_path = image_to_signal(file_path)
|
130 |
+
file_paths.append(csv_path)
|
131 |
+
except Exception as e:
|
132 |
+
return render_template('index.html', message=f'Error processing image: {str(e)}')
|
133 |
+
else:
|
134 |
+
file_paths.append(file_path)
|
135 |
+
|
136 |
+
if not file_paths:
|
137 |
+
return render_template('index.html', message='No valid files uploaded')
|
138 |
+
|
139 |
+
results = model_predict(file_paths, model)
|
140 |
+
return render_template('index.html', prediction=results)
|
141 |
|
142 |
+
if __name__ == '__main__':
|
143 |
+
if not os.path.exists(UPLOAD_FOLDER):
|
144 |
+
os.makedirs(UPLOAD_FOLDER)
|
145 |
+
app.run(debug=True, host='0.0.0.0', port=5000)
|