Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
@@ -1,145 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import cv2
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import tensorflow as tf
|
6 |
-
from tensorflow.keras.models import load_model
|
7 |
-
from flask import Flask, request, render_template
|
8 |
-
from werkzeug.utils import secure_filename
|
9 |
-
import biosppy.signals.ecg as ecg
|
10 |
-
|
11 |
-
app = Flask(__name__)
|
12 |
-
|
13 |
-
UPLOAD_FOLDER = 'uploads'
|
14 |
-
ALLOWED_EXTENSIONS = {'csv', 'png', 'jpg', 'jpeg'}
|
15 |
-
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
16 |
-
|
17 |
-
# Load the pre-trained model
|
18 |
-
model = load_model('ecgScratchEpoch2.hdf5')
|
19 |
-
|
20 |
-
def allowed_file(filename):
|
21 |
-
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
22 |
-
|
23 |
-
def image_to_signal(image_path):
|
24 |
-
# Read and preprocess the image
|
25 |
-
img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
|
26 |
-
if img is None:
|
27 |
-
raise ValueError("Failed to load image")
|
28 |
-
|
29 |
-
# Resize to a standard height for consistency (e.g., 500 pixels)
|
30 |
-
img = cv2.resize(img, (1000, 500))
|
31 |
-
|
32 |
-
# Apply thresholding to isolate the waveform
|
33 |
-
_, binary = cv2.threshold(img, 200, 255, cv2.THRESH_BINARY_INV)
|
34 |
-
|
35 |
-
# Find contours of the waveform
|
36 |
-
contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
37 |
-
if not contours:
|
38 |
-
raise ValueError("No waveform detected in the image")
|
39 |
-
|
40 |
-
# Assume the largest contour is the ECG waveform
|
41 |
-
contour = max(contours, key=cv2.contourArea)
|
42 |
-
|
43 |
-
# Extract y-coordinates (signal amplitude) along x-axis
|
44 |
-
signal = []
|
45 |
-
width = img.shape[1]
|
46 |
-
for x in range(width):
|
47 |
-
column = contour[contour[:, :, 0] == x]
|
48 |
-
if len(column) > 0:
|
49 |
-
# Take the average y-coordinate if multiple points exist
|
50 |
-
y = np.mean(column[:, :, 1])
|
51 |
-
signal.append(y)
|
52 |
-
else:
|
53 |
-
# Interpolate if no point is found
|
54 |
-
signal.append(signal[-1] if signal else 0)
|
55 |
-
|
56 |
-
# Normalize signal to match expected amplitude range
|
57 |
-
signal = np.array(signal)
|
58 |
-
signal = (signal - np.min(signal)) / (np.max(signal) - np.min(signal)) * 1000
|
59 |
-
|
60 |
-
# Save to CSV
|
61 |
-
csv_path = os.path.join(app.config['UPLOAD_FOLDER'], 'converted_signal.csv')
|
62 |
-
df = pd.DataFrame(signal, columns=[' Sample Value'])
|
63 |
-
df.to_csv(csv_path, index=False)
|
64 |
-
|
65 |
-
return csv_path
|
66 |
-
|
67 |
-
def model_predict(uploaded_files, model):
|
68 |
-
output = []
|
69 |
-
for path in uploaded_files:
|
70 |
-
APC, NORMAL, LBB, PVC, PAB, RBB, VEB = [], [], [], [], [], [], []
|
71 |
-
output.append(str(path))
|
72 |
-
result = {"APC": APC, "Normal": NORMAL, "LBB": LBB, "PAB": PAB, "PVC": PVC, "RBB": RBB, "VEB": VEB}
|
73 |
-
|
74 |
-
kernel = np.ones((4,4), np.uint8)
|
75 |
-
csv = pd.read_csv(path)
|
76 |
-
csv_data = csv[' Sample Value']
|
77 |
-
data = np.array(csv_data)
|
78 |
-
signals = []
|
79 |
-
count = 1
|
80 |
-
peaks = ecg.christov_segmenter(signal=data, sampling_rate=200)[0]
|
81 |
-
indices = []
|
82 |
-
|
83 |
-
for i in peaks[1:-1]:
|
84 |
-
diff1 = abs(peaks[count - 1] - i)
|
85 |
-
diff2 = abs(peaks[count + 1] - i)
|
86 |
-
x = peaks[count - 1] + diff1 // 2
|
87 |
-
y = peaks[count + 1] - diff2 // 2
|
88 |
-
signal = data[x:y]
|
89 |
-
signals.append(signal)
|
90 |
-
count += 1
|
91 |
-
indices.append((x, y))
|
92 |
-
|
93 |
-
for signal, index in zip(signals, indices):
|
94 |
-
if len(signal) > 10:
|
95 |
-
img = np.zeros((128, 128))
|
96 |
-
for i in range(len(signal)):
|
97 |
-
img[i, int(signal[i] / 10)] = 255
|
98 |
-
img = cv2.dilate(img, kernel, iterations=1)
|
99 |
-
img = img.reshape(128, 128, 1)
|
100 |
-
prediction = model.predict(np.array([img])).argmax()
|
101 |
-
classes = ['Normal', 'APC', 'LBB', 'PAB', 'PVC', 'RBB', 'VEB']
|
102 |
-
result[classes[prediction]].append(index)
|
103 |
-
|
104 |
-
output.append(result)
|
105 |
-
|
106 |
-
return output
|
107 |
-
|
108 |
-
@app.route('/', methods=['GET'])
|
109 |
-
def index():
|
110 |
-
return render_template('index.html')
|
111 |
-
|
112 |
-
@app.route('/', methods=['POST'])
|
113 |
-
def upload_file():
|
114 |
-
if 'files[]' not in request.files:
|
115 |
-
return render_template('index.html', message='No file part')
|
116 |
-
|
117 |
-
files = request.files.getlist('files[]')
|
118 |
-
file_paths = []
|
119 |
-
|
120 |
-
for file in files:
|
121 |
-
if file and allowed_file(file.filename):
|
122 |
-
filename = secure_filename(file.filename)
|
123 |
-
file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
|
124 |
-
file.save(file_path)
|
125 |
-
|
126 |
-
# If the file is an image, convert to CSV
|
127 |
-
if filename.rsplit('.', 1)[1].lower() in {'png', 'jpg', 'jpeg'}:
|
128 |
-
try:
|
129 |
-
csv_path = image_to_signal(file_path)
|
130 |
-
file_paths.append(csv_path)
|
131 |
-
except Exception as e:
|
132 |
-
return render_template('index.html', message=f'Error processing image: {str(e)}')
|
133 |
-
else:
|
134 |
-
file_paths.append(file_path)
|
135 |
-
|
136 |
-
if not file_paths:
|
137 |
-
return render_template('index.html', message='No valid files uploaded')
|
138 |
-
|
139 |
-
results = model_predict(file_paths, model)
|
140 |
-
return render_template('index.html', prediction=results)
|
141 |
-
|
142 |
-
if __name__ == '__main__':
|
143 |
-
if not os.path.exists(UPLOAD_FOLDER):
|
144 |
-
os.makedirs(UPLOAD_FOLDER)
|
145 |
-
app.run(debug=True, host='0.0.0.0', port=5000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|