Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import joblib
|
3 |
+
import numpy as np
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
import lightgbm as lgb
|
6 |
+
|
7 |
+
# Load models
|
8 |
+
ridge = joblib.load("model/ridge_model.pkl")
|
9 |
+
lgbm = lgb.Booster(model_file="model/lgb_model.txt")
|
10 |
+
sbert = SentenceTransformer('paraphrase-mpnet-base-v2')
|
11 |
+
|
12 |
+
def predict_score(essay_text):
|
13 |
+
embedding = sbert.encode([essay_text])
|
14 |
+
ridge_score = ridge.predict(embedding)[0]
|
15 |
+
lgbm_score = lgbm.predict(embedding)[0]
|
16 |
+
final_score = 0.5 * ridge_score + 0.5 * lgbm_score
|
17 |
+
return round(final_score, 2)
|
18 |
+
|
19 |
+
gr.Interface(
|
20 |
+
fn=predict_score,
|
21 |
+
inputs="text",
|
22 |
+
outputs="number",
|
23 |
+
title="Automated Essay Scorer",
|
24 |
+
description="Paste your essay below and get a predicted score."
|
25 |
+
).launch()
|