Navanihk commited on
Commit
427981d
·
1 Parent(s): 2650ad9
Files changed (3) hide show
  1. Dockerfile +7 -10
  2. recommend_normal.py +1 -1
  3. recommendwithdesc.py +2 -1
Dockerfile CHANGED
@@ -1,17 +1,14 @@
1
  # Use the official Python 3.10.9 image
2
  FROM python:3.10.9
3
 
4
- # Set working directory
5
- WORKDIR /app
6
-
7
- # Copy everything into container
8
  COPY . .
9
 
10
- # Install Python dependencies
11
- RUN pip install --no-cache-dir --upgrade -r requirements.txt
12
 
13
- # Expose the Flask port (default 5000, or whatever you use)
14
- EXPOSE 5000
15
 
16
- # Start the Flask app
17
- CMD ["python", "app.py"]
 
1
  # Use the official Python 3.10.9 image
2
  FROM python:3.10.9
3
 
4
+ # Copy the current directory contents into the container at .
 
 
 
5
  COPY . .
6
 
7
+ # Set the working directory to /
8
+ WORKDIR /
9
 
10
+ # Install requirements.txt
11
+ RUN pip install --no-cache-dir --upgrade -r /requirements.txt
12
 
13
+ # Start the FastAPI app on port 7860, the default port expected by Spaces
14
+ CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
recommend_normal.py CHANGED
@@ -28,7 +28,7 @@ def load_data():
28
 
29
  # Load movie data
30
  movies_data = load_data()
31
- vectorizer_path = hf_hub_download(repo_id=repo_id, filename="feature_vector.pkl", cache_dir=cache_dir)
32
  similarity_path = hf_hub_download(repo_id=repo_id, filename="model_similarity.pkl", cache_dir=cache_dir)
33
  def recommend_movies(movie_name):
34
  # Add the movie to the user's history
 
28
 
29
  # Load movie data
30
  movies_data = load_data()
31
+ vectorizer_path = hf_hub_download(repo_id=repo_id, filename="model_vectorizer.pkl", cache_dir=cache_dir)
32
  similarity_path = hf_hub_download(repo_id=repo_id, filename="model_similarity.pkl", cache_dir=cache_dir)
33
  def recommend_movies(movie_name):
34
  # Add the movie to the user's history
recommendwithdesc.py CHANGED
@@ -29,13 +29,14 @@ def load_data():
29
  movies_data = load_data()
30
  model_vectorizer = hf_hub_download(repo_id=repo_id, filename="model_vectorizer.pkl", cache_dir=cache_dir)
31
  similarity_path = hf_hub_download(repo_id=repo_id, filename="model_similarity.pkl", cache_dir=cache_dir)
 
32
  with open(model_vectorizer, 'rb') as vec_file, open(similarity_path, 'rb') as sim_file:
33
  vectorizer = pickle.load(vec_file)
34
  similarity = pickle.load(sim_file)
35
  def recommend_movies_with_desc(query):
36
  # Transform the query into a feature vector using the same vectorizer
37
  feature_vecto = vectorizer.transform(query)
38
- with open('feature_vector.pkl', 'rb') as feature:
39
  feature_vectors = pickle.load(feature)
40
 
41
  # Calculate cosine similarity between the query vector and the feature vectors of the movies
 
29
  movies_data = load_data()
30
  model_vectorizer = hf_hub_download(repo_id=repo_id, filename="model_vectorizer.pkl", cache_dir=cache_dir)
31
  similarity_path = hf_hub_download(repo_id=repo_id, filename="model_similarity.pkl", cache_dir=cache_dir)
32
+ feature_vector = hf_hub_download(repo_id=repo_id, filename="feature_vector.pkl", cache_dir=cache_dir)
33
  with open(model_vectorizer, 'rb') as vec_file, open(similarity_path, 'rb') as sim_file:
34
  vectorizer = pickle.load(vec_file)
35
  similarity = pickle.load(sim_file)
36
  def recommend_movies_with_desc(query):
37
  # Transform the query into a feature vector using the same vectorizer
38
  feature_vecto = vectorizer.transform(query)
39
+ with open(feature_vector, 'rb') as feature:
40
  feature_vectors = pickle.load(feature)
41
 
42
  # Calculate cosine similarity between the query vector and the feature vectors of the movies