File size: 14,564 Bytes
5133a2d 887b239 b1240b1 887b239 5133a2d 887b239 5133a2d 887b239 5133a2d 887b239 5133a2d 887b239 5133a2d b1240b1 5133a2d 887b239 5133a2d 887b239 5133a2d 887b239 5133a2d b1240b1 887b239 b1240b1 887b239 b1240b1 887b239 5133a2d 887b239 5133a2d 887b239 5133a2d 887b239 5133a2d 887b239 b1240b1 887b239 5133a2d 887b239 5133a2d 887b239 b1240b1 887b239 5133a2d 887b239 5133a2d 887b239 5133a2d 887b239 b1240b1 887b239 5133a2d 887b239 5133a2d b1240b1 5133a2d b1240b1 887b239 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
# mask_beard_blur_app.py
import os
import subprocess
import sys
import importlib
import pkg_resources
def install_package(package, version=None):
package_spec = f"{package}=={version}" if version else package
print(f"Installing {package_spec}...")
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", "--no-cache-dir", package_spec])
except subprocess.CalledProcessError as e:
print(f"Failed to install {package_spec}: {e}")
raise
# Check and install required packages
required_packages = {
"opencv-python": None,
"numpy": None,
"gradio": None,
"mediapipe": None,
"tensorflow": None,
"gitpython": None # For git operations
}
installed_packages = {pkg.key for pkg in pkg_resources.working_set}
for package, version in required_packages.items():
if package not in installed_packages:
install_package(package, version)
# Now import all necessary packages
import cv2
import numpy as np
import gradio as gr
import mediapipe as mp
import tensorflow as tf
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
import time
from pathlib import Path
import tempfile
import git
# Set TensorFlow to use memory growth to avoid consuming all GPU memory
physical_devices = tf.config.list_physical_devices('GPU')
if physical_devices:
try:
for device in physical_devices:
tf.config.experimental.set_memory_growth(device, True)
except:
print("Memory growth setting failed")
# Load face detection from MediaPipe (much faster than Haar cascades)
mp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils
# Global variable for model
mask_model = None
def download_model_repo():
"""Download the face mask detection model from GitHub"""
repo_url = "https://github.com/misbah4064/face_mask_detection.git"
repo_dir = "face_mask_detection"
model_path = os.path.join(repo_dir, "mask_recog.h5")
# Check if model already exists
if os.path.exists(model_path):
print(f"Model already exists at {model_path}")
return model_path
# Check if repository directory exists
if os.path.exists(repo_dir):
print(f"Repository directory already exists at {repo_dir}")
else:
print(f"Cloning repository from {repo_url}...")
try:
git.Repo.clone_from(repo_url, repo_dir)
print("Repository cloned successfully")
except Exception as e:
print(f"Error cloning repository: {e}")
# Try alternative method with subprocess
try:
subprocess.check_call(["git", "clone", repo_url])
print("Repository cloned with subprocess")
except Exception as sub_e:
print(f"Error with subprocess clone: {sub_e}")
return None
# Verify model file exists
if os.path.exists(model_path):
print(f"Model file found at {model_path}")
return model_path
else:
print(f"Model file not found at {model_path}")
return None
def load_mask_model():
"""Load the mask detection model once and cache it"""
global mask_model
if mask_model is None:
try:
# First try to download/access the model from GitHub
model_path = download_model_repo()
if model_path and os.path.exists(model_path):
# Use standard TF model
mask_model = tf.keras.models.load_model(model_path)
print(f"Loaded {model_path} successfully")
return True
else:
print("Failed to download or find the model")
return False
except Exception as e:
print(f"Error loading model: {e}")
return False
return True
def variance_of_laplacian(image):
"""Compute the variance of the Laplacian of the image (a measure of blur)."""
return cv2.Laplacian(image, cv2.CV_64F).var()
def is_image_blurry(image, threshold=100.0):
"""Determine if an image is blurry based on Laplacian variance"""
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur_score = variance_of_laplacian(gray)
return blur_score < threshold, blur_score
def detect_beard(face_image):
"""Detect beard using texture analysis of lower face region"""
h, w = face_image.shape[:2]
lower_face = face_image[h//2:, :]
if lower_face.size == 0:
return False, 0
# Convert to grayscale for texture analysis
gray = cv2.cvtColor(lower_face, cv2.COLOR_BGR2GRAY)
# Calculate standard deviation (texture measure)
std_val = np.std(gray)
# Calculate gradient magnitude (another texture measure)
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
gradient_magnitude = np.sqrt(sobelx**2 + sobely**2)
gradient_mean = np.mean(gradient_magnitude)
# Combined score
beard_score = std_val * 0.5 + gradient_mean * 0.5
threshold = 45 # Adjustable threshold
return beard_score > threshold, beard_score
def predict_mask(face_img):
"""Predict if a face is wearing a mask"""
global mask_model
# Resize and preprocess
face_rgb = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
face_resized = cv2.resize(face_rgb, (224, 224))
face_array = img_to_array(face_resized)
face_array = np.expand_dims(face_array, axis=0)
face_array = preprocess_input(face_array)
# Use standard TF model
preds = mask_model.predict(face_array, verbose=0)
mask_prob = float(preds[0][0])
return mask_prob > 0.5, mask_prob
def analyze_frame(frame, face_detector, min_detection_confidence=0.5, blur_threshold=100):
"""
Analyze a single frame for faces, masks, beards, and blur
"""
# Make a copy to avoid modifying the original
annotated_frame = frame.copy()
h, w = frame.shape[:2]
# Convert to RGB for MediaPipe
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Detect faces
results = face_detector.process(rgb_frame)
# Blur detection for the whole frame
is_blurry, blur_score = is_image_blurry(frame, blur_threshold)
blur_status = "Blurry" if is_blurry else "Clear"
blur_color = (0, 0, 255) if is_blurry else (0, 255, 0)
# Add blur information
cv2.putText(annotated_frame, f"Video Quality: {blur_status} ({blur_score:.1f})",
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, blur_color, 2)
face_count = 0
# Process detected faces
if results.detections:
for detection in results.detections:
# Get face bounding box
bbox = detection.location_data.relative_bounding_box
x = int(bbox.xmin * w)
y = int(bbox.ymin * h)
face_width = int(bbox.width * w)
face_height = int(bbox.height * h)
# Ensure coordinates are within frame boundaries
x = max(0, x)
y = max(0, y)
right = min(w, x + face_width)
bottom = min(h, y + face_height)
# Extract face
face_img = frame[y:bottom, x:right]
if face_img.size == 0:
continue
face_count += 1
# Predict mask
has_mask, mask_prob = predict_mask(face_img)
mask_status = "Mask" if has_mask else "No Mask"
mask_color = (0, 255, 0) if has_mask else (0, 0, 255)
# Draw face bounding box
cv2.rectangle(annotated_frame, (x, y), (right, bottom), mask_color, 2)
# Add mask information
cv2.putText(annotated_frame, f"{mask_status}: {mask_prob:.2f}",
(x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, mask_color, 2)
# Detect beard only if no mask
if not has_mask:
has_beard, beard_score = detect_beard(face_img)
beard_status = "Beard" if has_beard else "No Beard"
cv2.putText(annotated_frame, f"{beard_status}: {beard_score:.1f}",
(x, bottom + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 165, 0), 2)
# Add face count
cv2.putText(annotated_frame, f"Faces: {face_count}",
(10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
return annotated_frame
def process_video(video_path, progress=gr.Progress(), min_detection_confidence=0.5, blur_threshold=100):
"""Process video file and return the path to the processed video"""
if not load_mask_model():
return None, "Error: Could not load the mask detection model. Please check the console for details."
# Create a temporary file for the output
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_file:
output_path = temp_file.name
# Initialize video capture
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return None, "Error: Could not open video file."
# Get video properties
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Initialize video writer with H.264 codec
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
# Initialize face detector
with mp_face_detection.FaceDetection(
model_selection=1, # 0 for short-range, 1 for full-range detection
min_detection_confidence=min_detection_confidence
) as face_detector:
# Process frames
frame_count = 0
start_time = time.time()
while True:
ret, frame = cap.read()
if not ret:
break
# Update progress
progress((frame_count + 1) / total_frames, "Processing video...")
# Process frame
annotated_frame = analyze_frame(frame, face_detector, min_detection_confidence, blur_threshold)
# Write to output video
out.write(annotated_frame)
frame_count += 1
# Clean up
cap.release()
out.release()
# Calculate processing speed
elapsed_time = time.time() - start_time
processing_speed = frame_count / elapsed_time if elapsed_time > 0 else 0
return output_path, f"Processed {frame_count} frames in {elapsed_time:.1f} seconds ({processing_speed:.1f} FPS)"
def process_webcam_frame(frame, min_detection_confidence, blur_threshold):
"""Process a single webcam frame"""
if not load_mask_model():
return frame # Return original frame if model couldn't be loaded
# Initialize face detector for each frame in webcam mode
# This is less efficient but necessary for the Gradio webcam interface
with mp_face_detection.FaceDetection(
model_selection=1,
min_detection_confidence=min_detection_confidence
) as face_detector:
return analyze_frame(frame, face_detector, min_detection_confidence, blur_threshold)
# Create Gradio interface
with gr.Blocks(title="Enhanced Face Analysis System") as demo:
gr.Markdown("""
# Advanced Face Analysis System
This app detects and analyzes faces in videos to determine:
* 😷 If a person is wearing a **mask**
* 🧔 If a person has a **beard** (when no mask is present)
* 🎥 The **quality/blurriness** of the video
Upload a video or use your webcam for real-time analysis.
""")
with gr.Tabs():
with gr.TabItem("Video Upload"):
with gr.Row():
with gr.Column(scale=1):
video_input = gr.Video(label="Upload Video")
with gr.Row():
min_confidence = gr.Slider(
minimum=0.1, maximum=0.9, value=0.5, step=0.1,
label="Face Detection Confidence"
)
blur_threshold = gr.Slider(
minimum=50, maximum=200, value=100, step=10,
label="Blur Threshold"
)
process_btn = gr.Button("Process Video")
status_text = gr.Textbox(label="Processing Status")
with gr.Column(scale=1):
video_output = gr.Video(label="Processed Video")
process_btn.click(
fn=process_video,
inputs=[video_input, min_confidence, blur_threshold],
outputs=[video_output, status_text]
)
with gr.TabItem("Webcam (Real-time)"):
with gr.Row():
with gr.Column(scale=1):
webcam_confidence = gr.Slider(
minimum=0.1, maximum=0.9, value=0.5, step=0.1,
label="Face Detection Confidence"
)
webcam_blur = gr.Slider(
minimum=50, maximum=200, value=100, step=10,
label="Blur Threshold"
)
with gr.Column(scale=2):
webcam = gr.Image(sources=["webcam"], streaming=True, label="Webcam Feed")
webcam.stream(
fn=process_webcam_frame,
inputs=[webcam_confidence, webcam_blur]
)
gr.Markdown("""
### How to Use
1. **Video Upload Tab**: Upload a video file and click "Process Video." Adjust sliders to tune detection parameters.
2. **Webcam Tab**: Allow camera access for real-time analysis.
### Tips
- Higher face detection confidence gives fewer false positives but might miss some faces
- Higher blur threshold means more tolerance for blurry video
""")
# Ensure the model is downloaded when the app starts
def initialize_app():
print("Initializing app and downloading model...")
if load_mask_model():
print("Model loaded successfully!")
else:
print("Failed to load model, some features may not work.")
if __name__ == "__main__":
initialize_app()
demo.launch() |