Spaces:
Sleeping
Sleeping
File size: 30,497 Bytes
4275450 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 |
import os
import subprocess
import sys
import warnings
import logging
from typing import List, Dict, Any, Optional
import tempfile
import re
import time
import gc
import spaces
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("debug.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Suppress warnings
warnings.filterwarnings("ignore")
def install_package(package: str, version: Optional[str] = None) -> None:
"""Install a Python package if not already installed"""
package_spec = f"{package}=={version}" if version else package
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", "--no-cache-dir", package_spec])
print(f"Successfully installed {package_spec}")
except subprocess.CalledProcessError as e:
print(f"Failed to install {package_spec}: {e}")
raise
# Required packages - install these before importing
required_packages = {
"torch": None,
"gradio": "3.10.1",
"transformers": None,
"peft": None,
"bitsandbytes": None,
"PyPDF2": None,
"python-docx": None,
"accelerate": None,
"sentencepiece": None,
}
# Install required packages BEFORE importing them
for package, version in required_packages.items():
try:
__import__(package)
print(f"{package} is already installed.")
except ImportError:
print(f"Installing {package}...")
install_package(package, version)
# Now we can safely import all required modules
import torch
import transformers
import gradio as gr
from transformers import (
AutoTokenizer, AutoModelForCausalLM,
TrainingArguments, Trainer, TrainerCallback,
BitsAndBytesConfig
)
from peft import (
LoraConfig,
prepare_model_for_kbit_training,
get_peft_model
)
import PyPDF2
import docx
import numpy as np
from tqdm import tqdm
from torch.utils.data import Dataset as TorchDataset
# Suppress transformers warnings
transformers.logging.set_verbosity_error()
# Check GPU availability
if torch.cuda.is_available():
DEVICE = "cuda"
print(f"GPU found: {torch.cuda.get_device_name(0)}")
print(f"CUDA version: {torch.version.cuda}")
else:
DEVICE = "cpu"
print("No GPU found, using CPU. Fine-tuning will be much slower.")
print("For better performance, use Google Colab with GPU runtime (Runtime > Change runtime type > GPU)")
# Constants specific to Phi-2
MODEL_KEY = "microsoft/phi-2"
MAX_SEQ_LEN = 512 # Reduced from 1024 for much lighter memory usage
# FIX: Updated target modules for Phi-2
LORA_TARGET_MODULES = ["q_proj", "k_proj", "v_proj", "dense"] # Correct modules for Phi-2
# Initialize model and tokenizer
model = None
tokenizer = None
fine_tuned_model = None
document_text = "" # Store document content for context
def load_base_model() -> str:
"""Load Phi-2 with 8-bit quantization instead of 4-bit for faster training"""
global model, tokenizer
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
try:
# Use 8-bit quantization (faster to train than 4-bit)
if DEVICE == "cuda":
bnb_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False
)
else:
bnb_config = None
# Load tokenizer with Phi-2 specific settings
print("Loading Phi-2 tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(
MODEL_KEY,
trust_remote_code=True,
padding_side="right"
)
# Ensure pad token is properly set
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load model with Phi-2 specific configuration
print("Loading Phi-2 model... (this may take a few minutes)")
if DEVICE == "cuda":
model = AutoModelForCausalLM.from_pretrained(
MODEL_KEY,
quantization_config=bnb_config,
device_map="auto",
torch_dtype=torch.float16,
trust_remote_code=True,
low_cpu_mem_usage=True
)
else:
model = AutoModelForCausalLM.from_pretrained(
MODEL_KEY,
torch_dtype=torch.float32,
trust_remote_code=True,
low_cpu_mem_usage=True
).to(DEVICE)
print("Phi-2 (2.7B) model loaded successfully!")
return "Phi-2 (2.7B) model loaded successfully! Ready to process documents."
except Exception as e:
error_msg = f"Error loading model: {str(e)}"
print(error_msg)
return error_msg
def phi2_prompt_template(context: str, question: str) -> str:
"""
Create a prompt optimized for Phi-2
Phi-2 responds well to clear instruction formatting
"""
return f"""Instruction: Answer the question accurately based on the context provided.
Context: {context}
Question: {question}
Answer:"""
def process_pdf(file_path: str) -> str:
"""Extract text from PDF file"""
text = ""
try:
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
total_pages = len(pdf_reader.pages)
# Process at most 30 pages to avoid memory issues
pages_to_process = min(total_pages, 30)
for i in range(pages_to_process):
page = pdf_reader.pages[i]
page_text = page.extract_text() or ""
text += page_text + "\n"
if total_pages > pages_to_process:
text += f"\n[Note: Only the first {pages_to_process} pages were processed due to size limitations.]"
except Exception as e:
print(f"Error processing PDF: {str(e)}")
return text
def process_docx(file_path: str) -> str:
"""Extract text from DOCX file"""
try:
doc = docx.Document(file_path)
text = "\n".join([para.text for para in doc.paragraphs])
return text
except Exception as e:
print(f"Error processing DOCX: {str(e)}")
return ""
def process_txt(file_path: str) -> str:
"""Extract text from TXT file"""
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as file:
text = file.read()
return text
except Exception as e:
print(f"Error processing TXT: {str(e)}")
return ""
def preprocess_text(text: str) -> str:
"""Clean and preprocess text"""
if not text:
return ""
# Remove extra whitespace
text = re.sub(r'\s+', ' ', text)
# Remove special characters that may cause issues
text = re.sub(r'[^\w\s.,;:!?\'\"()-]', '', text)
return text.strip()
def get_semantic_chunks(text: str, chunk_size: int = 300, overlap: int = 50) -> List[str]:
"""More efficient semantic chunking"""
if not text:
return []
# Simple sentence splitting for speed
sentences = re.split(r'(?<=[.!?])\s+', text)
chunks = []
current_chunk = []
current_length = 0
for sentence in sentences:
words = sentence.split()
if current_length + len(words) <= chunk_size:
current_chunk.append(sentence)
current_length += len(words)
else:
if current_chunk:
chunks.append(' '.join(current_chunk))
current_chunk = [sentence]
current_length = len(words)
if current_chunk:
chunks.append(' '.join(current_chunk))
# Limit to just 5 chunks for much faster processing
if len(chunks) > 5:
indices = np.linspace(0, len(chunks)-1, 5, dtype=int)
chunks = [chunks[i] for i in indices]
return chunks
def create_qa_dataset(document_chunks: List[str]) -> List[Dict[str, str]]:
"""Create comprehensive QA pairs from document chunks for better fine-tuning"""
qa_pairs = []
# Document-level questions
full_text = " ".join(document_chunks[:5]) # Use beginning of document for overview
qa_pairs.append({
"question": "What is this document about?",
"context": full_text,
"answer": "Based on my analysis, this document discusses..." # Empty template for model to learn
})
qa_pairs.append({
"question": "Summarize the key points of this document.",
"context": full_text,
"answer": "The key points of this document are..."
})
# Process each chunk for specific QA pairs
for i, chunk in enumerate(document_chunks):
if not chunk or len(chunk) < 100: # Skip very short chunks
continue
# Context-specific questions
chunk_index = i + 1 # 1-indexed for readability
# Basic factual questions about chunk content
qa_pairs.append({
"question": f"What information is contained in section {chunk_index}?",
"context": chunk,
"answer": f"Section {chunk_index} contains information about..."
})
# Entity-based questions - find names, organizations, technical terms
entities = set(re.findall(r'\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+)*\b', chunk))
technical_terms = set(re.findall(r'\b[A-Za-z]+-?[A-Za-z]+\b', chunk))
# Filter to meaningful entities (longer than 3 chars)
entities = [e for e in entities if len(e) > 3][:2] # Limit to 2 entity questions per chunk
for entity in entities:
qa_pairs.append({
"question": f"What does the document say about {entity}?",
"context": chunk,
"answer": f"Regarding {entity}, the document states that..."
})
# Specific content questions
sentences = re.split(r'(?<=[.!?])\s+', chunk)
key_sentences = [s for s in sentences if len(s.split()) > 8][:2] # Focus on substantive sentences
for sentence in key_sentences:
# Create question from sentence by identifying subject
subject_match = re.search(r'^(The|A|An|This|These|Those|Some|Any|Many|Few|All|Most)?\s*([A-Za-z\s]+?)\s+(is|are|was|were|has|have|had|can|could|will|would|may|might)', sentence, re.IGNORECASE)
if subject_match:
subject = subject_match.group(2).strip()
if len(subject) > 2:
qa_pairs.append({
"question": f"What information is provided about {subject}?",
"context": chunk,
"answer": sentence
})
# Add relationship questions between concepts
if i < len(document_chunks) - 1:
next_chunk = document_chunks[i+1]
qa_pairs.append({
"question": f"How does the information in section {chunk_index} relate to section {chunk_index+1}?",
"context": chunk + " " + next_chunk,
"answer": f"Section {chunk_index} discusses... while section {chunk_index+1} covers... The relationship between them is..."
})
# Limit to 5 examples max for lighter memory usage
if len(qa_pairs) > 5:
import random
random.shuffle(qa_pairs)
qa_pairs = qa_pairs[:5]
return qa_pairs
class QADataset(TorchDataset):
"""PyTorch dataset specialized for Phi-2 QA fine-tuning"""
def __init__(self, qa_pairs: List[Dict[str, str]], tokenizer, max_length: int = MAX_SEQ_LEN):
self.qa_pairs = qa_pairs
self.tokenizer = tokenizer
self.max_length = max_length
# Verify dataset structure
self.validate_dataset()
def validate_dataset(self):
"""Verify that the dataset has proper structure"""
if not self.qa_pairs:
print("Warning: Empty dataset!")
return
required_keys = ["question", "context", "answer"]
for i, item in enumerate(self.qa_pairs[:5]): # Check first 5 examples
missing = [k for k in required_keys if k not in item]
if missing:
print(f"Warning: Example {i} missing keys: {missing}")
# Check for empty values
empty = [k for k in required_keys if k in item and not item[k]]
if empty:
print(f"Warning: Example {i} has empty values for: {empty}")
def __len__(self):
return len(self.qa_pairs)
def __getitem__(self, idx):
qa_pair = self.qa_pairs[idx]
# Format prompt using Phi-2 template
context = qa_pair['context']
question = qa_pair['question']
answer = qa_pair['answer']
# Build Phi-2 specific prompt
prompt = phi2_prompt_template(context, question)
# Concatenate prompt and answer
sequence = f"{prompt} {answer}"
try:
# Tokenize with proper handling
encoded = self.tokenizer(
sequence,
truncation=True,
max_length=self.max_length,
padding="max_length",
return_tensors="pt"
)
# Extract tensors
input_ids = encoded["input_ids"].squeeze(0)
attention_mask = encoded["attention_mask"].squeeze(0)
# Create labels
labels = input_ids.clone()
# Calculate prompt length accurately
prompt_encoded = self.tokenizer(prompt, add_special_tokens=False)
prompt_length = len(prompt_encoded["input_ids"])
# Ensure prompt_length doesn't exceed labels length
prompt_length = min(prompt_length, len(labels))
# Set labels for prompt portion to -100 (ignored in loss calculation)
labels[:prompt_length] = -100
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels
}
except Exception as e:
print(f"Error processing sample {idx}: {e}")
# Return dummy sample as fallback
return {
"input_ids": torch.zeros(self.max_length, dtype=torch.long),
"attention_mask": torch.zeros(self.max_length, dtype=torch.long),
"labels": torch.zeros(self.max_length, dtype=torch.long)
}
def clear_gpu_memory():
"""Clear GPU memory to prevent OOM errors"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
class ProgressCallback(TrainerCallback):
def __init__(self, progress, status_box=None):
self.progress = progress
self.status_box = status_box
self.current_step = 0
self.total_steps = 0
def on_train_begin(self, args, state, control, **kwargs):
self.total_steps = state.max_steps
def on_step_end(self, args, state, control, **kwargs):
self.current_step = state.global_step
progress_percent = self.current_step / self.total_steps
self.progress(0.4 + (0.5 * progress_percent),
desc=f"Epoch {state.epoch}/{args.num_train_epochs} | Step {self.current_step}/{self.total_steps}")
if self.status_box:
self.status_box.update(f"Training in progress: Epoch {state.epoch}/{args.num_train_epochs} | Step {self.current_step}/{self.total_steps}")
def create_deepspeed_config():
"""Create DeepSpeed config for faster training"""
return {
"fp16": {
"enabled": True
},
"zero_optimization": {
"stage": 2,
"offload_optimizer": {
"device": "cpu",
"pin_memory": True
},
"allgather_partitions": True,
"allgather_bucket_size": 5e8,
"reduce_scatter": True,
"reduce_bucket_size": 5e8,
"overlap_comm": True,
"contiguous_gradients": True
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": 2e-4,
"betas": [0.9, 0.999],
"eps": 1e-8,
"weight_decay": 0.01
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": 0,
"warmup_max_lr": 2e-4,
"warmup_num_steps": 50
}
},
"train_batch_size": 1,
"train_micro_batch_size_per_gpu": 1,
"gradient_accumulation_steps": 1,
"gradient_clipping": 0.5,
"steps_per_print": 10
}
def finetune_model(qa_dataset, progress=gr.Progress(), status_box=None):
"""Fine-tune Phi-2 using optimized LoRA parameters"""
global model, tokenizer, fine_tuned_model
if model is None:
return "Please load the base model first."
if len(qa_dataset) == 0:
return "No training data created. Please check your document."
try:
progress(0.1, desc="Preparing model for fine-tuning...")
if status_box:
status_box.update("Preparing model for fine-tuning...")
# Clear GPU memory
clear_gpu_memory()
# Prepare model for 8-bit training if using GPU
if DEVICE == "cuda":
training_model = prepare_model_for_kbit_training(model)
else:
training_model = model
# Add this line to fix the gradient error
training_model.enable_input_require_grads()
# Configure LoRA for Phi-2
peft_config = LoraConfig(
r=2, # Reduced rank for lighter training
lora_alpha=4, # Reduced alpha
lora_dropout=0.05, # Added small dropout for regularization
bias="none",
task_type="CAUSAL_LM",
target_modules=LORA_TARGET_MODULES # Fixed Phi-2 modules
)
# Apply LoRA to model
lora_model = get_peft_model(training_model, peft_config)
# Print trainable parameters
trainable_params = sum(p.numel() for p in lora_model.parameters() if p.requires_grad)
all_params = sum(p.numel() for p in lora_model.parameters())
print(f"Trainable parameters: {trainable_params:,} ({trainable_params/all_params:.2%} of {all_params:,} total)")
# Enable gradient checkpointing for memory efficiency
if hasattr(lora_model, "gradient_checkpointing_enable"):
lora_model.gradient_checkpointing_enable()
print("Gradient checkpointing enabled")
# Create training arguments optimized for Phi-2
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=2, # Set to 2 as requested
per_device_train_batch_size=1,
gradient_accumulation_steps=1,
learning_rate=1e-4, # Reduced from 2e-4 for stability
lr_scheduler_type="constant", # Simplified scheduler
warmup_ratio=0.05, # Slight increase in warmup
weight_decay=0.01,
logging_steps=1,
max_grad_norm=0.3, # Reduced from 0.5 for better gradient stability
save_strategy="no",
report_to="none",
remove_unused_columns=False,
fp16=(DEVICE == "cuda"),
no_cuda=(DEVICE == "cpu"),
optim="adamw_torch", # Use standard optimizer instead of fused for stability
gradient_checkpointing=True
)
# Add DeepSpeed if on CUDA
if DEVICE == "cuda":
training_args.deepspeed = create_deepspeed_config()
# Create data collator that doesn't move tensors to device yet
def collate_fn(features):
batch = {}
for key in features[0].keys():
if key in ["input_ids", "attention_mask", "labels"]:
batch[key] = torch.stack([f[key] for f in features])
return batch
progress(0.3, desc="Setting up trainer...")
if status_box:
status_box.update("Setting up trainer...")
# Create trainer
trainer = Trainer(
model=lora_model,
args=training_args,
train_dataset=qa_dataset,
data_collator=collate_fn,
callbacks=[ProgressCallback(progress, status_box)] # Add both callbacks
)
# Start training
progress(0.4, desc="Initializing training...")
if status_box:
status_box.update("Initializing training...")
print("Starting training...")
trainer.train()
# Set fine-tuned model
fine_tuned_model = lora_model
# Put model in evaluation mode
fine_tuned_model.eval()
# Clear memory
clear_gpu_memory()
return "Fine-tuning completed successfully! You can now ask questions about your document."
except Exception as e:
error_msg = f"Error during fine-tuning: {str(e)}"
print(error_msg)
import traceback
traceback.print_exc()
# Try to clean up memory
try:
clear_gpu_memory()
except:
pass
return error_msg
def process_document(file_obj, progress=gr.Progress(), status_box=None):
"""Process uploaded document and prepare dataset for fine-tuning"""
global model, tokenizer, document_text
progress(0, desc="Processing document...")
if status_box:
status_box.update("Processing document...")
if not file_obj:
return "Please upload a document first."
try:
# Create temp directory for file
temp_dir = tempfile.mkdtemp()
# Get file name
file_name = getattr(file_obj, 'name', 'uploaded_file')
if not isinstance(file_name, str):
file_name = "uploaded_file.txt" # Default name
# Ensure file has extension
if '.' not in file_name:
file_name = file_name + '.txt'
temp_path = os.path.join(temp_dir, file_name)
# Get file content
if hasattr(file_obj, 'read'):
file_content = file_obj.read()
else:
file_content = file_obj
with open(temp_path, 'wb') as f:
f.write(file_content)
# Extract text based on file extension
file_extension = os.path.splitext(file_name)[1].lower()
if file_extension == '.pdf':
text = process_pdf(temp_path)
elif file_extension in ['.docx', '.doc']:
text = process_docx(temp_path)
elif file_extension == '.txt' or True: # Default to txt for unknown extensions
text = process_txt(temp_path)
# Check if text was extracted
if not text or len(text) < 50:
return "Could not extract sufficient text from the document. Please check the file."
# Save document text for context window during inference
document_text = text
# Preprocess and chunk the document
progress(0.3, desc="Preprocessing document...")
if status_box:
status_box.update("Preprocessing document...")
text = preprocess_text(text)
chunks = get_semantic_chunks(text)
if not chunks:
return "Could not extract meaningful text from the document."
# Create enhanced QA pairs
progress(0.5, desc="Creating QA dataset...")
if status_box:
status_box.update("Creating QA dataset...")
qa_pairs = create_qa_dataset(chunks)
print(f"Created {len(qa_pairs)} QA pairs for training")
# Debug: Print a sample of QA pairs to verify format
if qa_pairs:
print("\nSample QA pair for validation:")
sample = qa_pairs[0]
print(f"Question: {sample['question']}")
print(f"Context length: {len(sample['context'])} chars")
print(f"Answer: {sample['answer'][:50]}...")
# Create dataset
qa_dataset = QADataset(qa_pairs, tokenizer, max_length=MAX_SEQ_LEN)
# Fine-tune model
progress(0.7, desc="Starting fine-tuning...")
if status_box:
status_box.update("Starting fine-tuning...")
result = finetune_model(qa_dataset, progress, status_box)
# Clean up
try:
os.remove(temp_path)
os.rmdir(temp_dir)
except:
pass
return result
except Exception as e:
error_msg = f"Error processing document: {str(e)}"
print(error_msg)
import traceback
traceback.print_exc()
return error_msg
def generate_answer(question, status_box=None):
"""Generate answer using fine-tuned Phi-2 model with improved response quality"""
global fine_tuned_model, tokenizer, document_text
if fine_tuned_model is None:
return "Please process a document first!"
if not question.strip():
return "Please enter a question."
try:
# Clear memory before generation
if torch.cuda.is_available():
torch.cuda.empty_cache()
# For better answers, use document context to help the model
# Find relevant context from document (simple keyword matching for efficiency)
keywords = re.findall(r'\b\w{5,}\b', question.lower())
context = document_text
# If document is very long, try to find relevant section
if len(document_text) > 2000 and keywords:
chunks = get_semantic_chunks(document_text, chunk_size=500, overlap=100)
relevant_chunks = []
for chunk in chunks:
score = sum(1 for keyword in keywords if keyword.lower() in chunk.lower())
if score > 0:
relevant_chunks.append((chunk, score))
relevant_chunks.sort(key=lambda x: x[1], reverse=True)
if relevant_chunks:
# Use top 2 most relevant chunks
context = " ".join([chunk for chunk, _ in relevant_chunks[:2]])
# Limit context length to fit in model's context window
context = context[:1500] # Limit to 1500 chars for prompt space
# Create Phi-2 optimized prompt
prompt = phi2_prompt_template(context, question)
# Ensure model is in evaluation mode
fine_tuned_model.eval()
# Tokenize input
inputs = tokenizer(prompt, return_tensors="pt").to(fine_tuned_model.device)
# Configure generation parameters optimized for Phi-2
with torch.no_grad():
outputs = fine_tuned_model.generate(
**inputs,
max_new_tokens=75, # Reduced from 150
do_sample=True,
temperature=0.7,
top_k=40,
top_p=0.85,
repetition_penalty=1.2,
pad_token_id=tokenizer.pad_token_id
)
# Decode response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the generated answer part
if "Answer:" in response:
answer = response.split("Answer:")[-1].strip()
else:
answer = response
# If answer is too short or generic, try again with more temperature
if len(answer.split()) < 10 or "I don't have enough information" in answer:
with torch.no_grad():
outputs = fine_tuned_model.generate(
**inputs,
max_new_tokens=75, # Reduced from 150
do_sample=True,
temperature=0.9, # Higher temperature
top_k=40,
top_p=0.92,
repetition_penalty=1.2,
pad_token_id=tokenizer.pad_token_id
)
# Decode second attempt
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract answer
if "Answer:" in response:
answer = response.split("Answer:")[-1].strip()
else:
answer = response
return answer
except Exception as e:
error_msg = f"Error generating answer: {str(e)}"
print(error_msg)
return error_msg
# Create Gradio interface
with gr.Blocks(title="Phi-2 Document QA", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π Phi-2 Document Q&A System")
gr.Markdown("Specialized system for fine-tuning Microsoft's Phi-2 model on your documents")
with gr.Tab("Document Processing"):
file_input = gr.File(
label="Upload Document (PDF, DOCX, or TXT)",
file_types=[".pdf", ".docx", ".txt"],
type="binary"
)
with gr.Row():
load_model_btn = gr.Button("1. Load Phi-2 Model", variant="secondary")
process_btn = gr.Button("2. Process & Fine-tune Document", variant="primary")
status = gr.Textbox(
label="Status",
placeholder="First load the model, then upload a document and click 'Process & Fine-tune'",
lines=3
)
gr.Markdown("""
### Tips for Best Results
- PDF, DOCX and TXT files are supported
- Keep documents under 10 pages for best results
- Processing time depends on document length and GPU availability
- For GPU usage in Colab: Runtime > Change runtime type > GPU
""")
with gr.Tab("Ask Questions"):
question_input = gr.Textbox(
label="Your Question",
placeholder="Ask about your document...",
lines=2
)
ask_btn = gr.Button("Get Answer", variant="primary")
answer_output = gr.Textbox(
label="Phi-2's Response",
placeholder="The answer will appear here after you ask a question",
lines=8
)
gr.Markdown("""
### Example Questions
- "What is this document about?"
- "Summarize the key points in this document"
- "What does the document say about [specific topic]?"
- "Explain the relationship between [concept A] and [concept B]"
""")
# Set up events
load_model_btn.click(
fn=load_base_model,
outputs=[status]
)
process_btn.click(
fn=process_document,
inputs=[file_input],
outputs=[status]
)
ask_btn.click(
fn=generate_answer,
inputs=[question_input],
outputs=[answer_output]
)
# Launch the app
if __name__ == "__main__":
demo.launch(share=True) |