# Install required packages import os import subprocess import sys # Check if running in a standard environment (not Colab/Jupyter) # and install packages if needed if not os.path.exists("/.dockerenv") and not os.path.exists("/kaggle"): try: # Try importing the required packages import gradio import cv2 import numpy as np import matplotlib import PIL # Special handling for TensorFlow and DeepFace dependencies try: import tensorflow as tf tf_version = tf.__version__ print(f"TensorFlow version: {tf_version}") # If TensorFlow version is >=2.16, we need to install tf-keras if tf_version >= "2.16.0": print("Installing tf-keras for compatibility with newer TensorFlow...") subprocess.check_call([sys.executable, "-m", "pip", "install", "tf-keras"]) # Now try to import deepface import deepface except ImportError as e: print(f"Error importing dependencies: {str(e)}") print("Installing deepface with specific dependencies...") # First downgrade tensorflow to a compatible version if needed subprocess.check_call([sys.executable, "-m", "pip", "install", "tensorflow<2.16.0"]) # Then install deepface subprocess.check_call([sys.executable, "-m", "pip", "install", "deepface"]) except ImportError: print("Installing required packages...") subprocess.check_call([sys.executable, "-m", "pip", "install", "gradio", "opencv-python-headless", "numpy", "matplotlib", "pillow"]) subprocess.check_call([sys.executable, "-m", "pip", "install", "tensorflow<2.16.0"]) # Use older version subprocess.check_call([sys.executable, "-m", "pip", "install", "deepface"]) # Now import the required modules import gradio as gr import json import cv2 import numpy as np from PIL import Image import tempfile import pandas as pd import shutil import matplotlib.pyplot as plt # Import DeepFace after ensuring dependencies are properly installed from deepface import DeepFace def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"): # Save uploaded images to temporary files temp_dir = tempfile.mkdtemp() img1_path = os.path.join(temp_dir, "image1.jpg") img2_path = os.path.join(temp_dir, "image2.jpg") # Convert to PIL Images and save if isinstance(img1, np.ndarray): Image.fromarray(img1).save(img1_path) else: img1.save(img1_path) if isinstance(img2, np.ndarray): Image.fromarray(img2).save(img2_path) else: img2.save(img2_path) # Perform face verification try: result = DeepFace.verify( img1_path=img1_path, img2_path=img2_path, model_name=model, distance_metric="cosine", threshold=threshold ) # Create comparison visualization fig, ax = plt.subplots(1, 2, figsize=(10, 5)) # Display images img1_display = cv2.imread(img1_path) img1_display = cv2.cvtColor(img1_display, cv2.COLOR_BGR2RGB) img2_display = cv2.imread(img2_path) img2_display = cv2.cvtColor(img2_display, cv2.COLOR_BGR2RGB) ax[0].imshow(img1_display) ax[0].set_title("Image 1") ax[0].axis("off") ax[1].imshow(img2_display) ax[1].set_title("Image 2") ax[1].axis("off") # Create result message verification_result = "✅ FACE MATCHED" if result["verified"] else "❌ FACE NOT MATCHED" confidence = round((1 - result["distance"]) * 100, 2) plt.suptitle(f"{verification_result}\nConfidence: {confidence}%\nDistance: {result['distance']:.4f}", fontsize=16, fontweight='bold', color='green' if result["verified"] else 'red') plt.tight_layout() # Clean up temporary files os.remove(img1_path) os.remove(img2_path) os.rmdir(temp_dir) return fig, json.dumps(result, indent=2) except Exception as e: # Clean up temporary files if os.path.exists(img1_path): os.remove(img1_path) if os.path.exists(img2_path): os.remove(img2_path) if os.path.exists(temp_dir): os.rmdir(temp_dir) error_msg = f"Error: {str(e)}" if "No face detected" in str(e): error_msg = "No face detected in one or both images. Please try different images." return None, error_msg def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"): # Create temp directory temp_dir = tempfile.mkdtemp() query_path = os.path.join(temp_dir, "query.jpg") # Save query image if isinstance(query_img, np.ndarray): Image.fromarray(query_img).save(query_path) else: query_img.save(query_path) # If db_folder is just a string, assume it's a folder path the user entered if isinstance(db_folder, str): db_path = db_folder else: # Handling for folder upload (creates a temp directory with the images) db_path = os.path.join(temp_dir, "db") os.makedirs(db_path, exist_ok=True) for i, file in enumerate(db_folder): file_ext = os.path.splitext(file.name)[1] shutil.copy(file.name, os.path.join(db_path, f"image_{i}{file_ext}")) try: # Find matching faces dfs = DeepFace.find( img_path=query_path, db_path=db_path, model_name=model, distance_metric="cosine", threshold=threshold ) if isinstance(dfs, list): # Handle case where multiple faces are found in query image if len(dfs) == 0: return None, "No matching faces found in the database." df = dfs[0] # Take first face results else: df = dfs # Check if any matches were found if df.empty: return None, "No matching faces found in the database." # Sort by similarity (lowest distance first) df = df.sort_values(by=["distance"]) # Create visualization for top matches (up to 4) num_matches = min(4, len(df)) fig, axes = plt.subplots(1, num_matches + 1, figsize=(15, 5)) # Display query image query_display = cv2.imread(query_path) query_display = cv2.cvtColor(query_display, cv2.COLOR_BGR2RGB) axes[0].imshow(query_display) axes[0].set_title("Query Image") axes[0].axis("off") # Display matches for i in range(num_matches): match_path = df.iloc[i]["identity"] distance = df.iloc[i]["distance"] confidence = round((1 - distance) * 100, 2) match_img = cv2.imread(match_path) match_img = cv2.cvtColor(match_img, cv2.COLOR_BGR2RGB) axes[i+1].imshow(match_img) axes[i+1].set_title(f"Match #{i+1}\nConfidence: {confidence}%") axes[i+1].axis("off") plt.suptitle(f"Found {len(df)} matching faces", fontsize=16, fontweight='bold') plt.tight_layout() # Format results for display results = df[["identity", "distance"]].copy() results["confidence"] = (1 - results["distance"]) * 100 results["confidence"] = results["confidence"].round(2) results = results.rename(columns={"identity": "Image Path"}) # Clean up temp files os.remove(query_path) # Don't remove temp DB folder if it came from user input if not isinstance(db_folder, str): shutil.rmtree(db_path) return fig, results.to_dict('records') except Exception as e: # Clean up temp files if os.path.exists(query_path): os.remove(query_path) error_msg = f"Error: {str(e)}" if "No face detected" in str(e): error_msg = "No face detected in the query image. Please try a different image." return None, error_msg def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']): # Create temp directory and save image temp_dir = tempfile.mkdtemp() img_path = os.path.join(temp_dir, "analyze.jpg") if isinstance(img, np.ndarray): Image.fromarray(img).save(img_path) else: img.save(img_path) try: # Analyze facial attributes results = DeepFace.analyze( img_path=img_path, actions=actions, enforce_detection=True, detector_backend='opencv' ) # Handle both single face and multiple faces results if isinstance(results, list): num_faces = len(results) else: num_faces = 1 results = [results] # Create visualization fig = plt.figure(figsize=(14, 7)) # Load the image for display img_display = cv2.imread(img_path) img_display = cv2.cvtColor(img_display, cv2.COLOR_BGR2RGB) # Main image display main_ax = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2) main_ax.imshow(img_display) main_ax.set_title(f"Analyzed Image ({num_faces} face{'s' if num_faces > 1 else ''} detected)") main_ax.axis('off') # Create a results summary for each face for i, face_result in enumerate(results): if i >= 4: # Limit to 4 faces for display break # Get main results age = face_result.get('age', 'N/A') gender = face_result.get('dominant_gender', 'N/A') race = face_result.get('dominant_race', 'N/A') emotion = face_result.get('dominant_emotion', 'N/A') # Gender confidence gender_conf = 'N/A' if 'gender' in face_result and isinstance(face_result['gender'], dict): for g, conf in face_result['gender'].items(): if g.lower() == gender.lower(): gender_conf = f"{conf:.1f}%" break # Race confidence race_conf = 'N/A' if 'race' in face_result and isinstance(face_result['race'], dict): for r, conf in face_result['race'].items(): if r.lower() == race.lower(): race_conf = f"{conf:.1f}%" break # Emotion confidence emotion_conf = 'N/A' if 'emotion' in face_result and isinstance(face_result['emotion'], dict): for e, conf in face_result['emotion'].items(): if e.lower() == emotion.lower(): emotion_conf = f"{conf:.1f}%" break # Create subplot for this face's results ax = plt.subplot2grid((2, 4), (0 if i < 2 else 1, 2 + (i % 2))) # Format text for subplot text = ( f"Face #{i+1}\n\n" f"Age: {age}\n\n" f"Gender: {gender} ({gender_conf})\n\n" f"Race: {race} ({race_conf})\n\n" f"Emotion: {emotion} ({emotion_conf})" ) ax.text(0.5, 0.5, text, ha='center', va='center', fontsize=11) ax.axis('off') plt.tight_layout() # Clean up temp files os.remove(img_path) os.rmdir(temp_dir) # Format results for display in JSON formatted_results = [] for i, res in enumerate(results[:8]): # Limit to 8 faces for JSON display face_data = { "face_number": i+1, "age": res.get("age", "N/A"), "gender": { "dominant": res.get("dominant_gender", "N/A"), "confidence": res.get("gender", {}) }, "race": { "dominant": res.get("dominant_race", "N/A"), "confidence": res.get("race", {}) }, "emotion": { "dominant": res.get("dominant_emotion", "N/A"), "confidence": res.get("emotion", {}) } } formatted_results.append(face_data) return fig, formatted_results except Exception as e: # Clean up temp files if os.path.exists(img_path): os.remove(img_path) if os.path.exists(temp_dir): os.rmdir(temp_dir) error_msg = f"Error: {str(e)}" if "No face detected" in str(e): error_msg = "No face detected in the image. Please try a different image." return None, error_msg # Create Gradio interface with gr.Blocks(title="Complete Face Recognition Tool", theme=gr.themes.Soft()) as demo: gr.Markdown(""" # 🔍 Complete Face Recognition Tool This tool provides three face recognition features: - **Verify Faces**: Compare two specific images to check if they contain the same person - **Find Faces**: Search for matching faces in a database/folder - **Analyze Face**: Determine age, gender, race, and emotion from a facial image """) with gr.Tabs(): with gr.TabItem("Verify Faces"): with gr.Row(): with gr.Column(): img1_input = gr.Image(label="First Image", type="pil") with gr.Column(): img2_input = gr.Image(label="Second Image", type="pil") with gr.Row(): with gr.Column(): verify_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05, label="Similarity Threshold (lower = stricter matching)") with gr.Column(): verify_model = gr.Dropdown( choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"], value="VGG-Face", label="Face Recognition Model" ) verify_button = gr.Button("Verify Faces", variant="primary") with gr.Row(): verify_result_plot = gr.Plot(label="Verification Result") with gr.Row(): verify_json = gr.JSON(label="Technical Details") # Set up the verification function verify_button.click( verify_faces, inputs=[img1_input, img2_input, verify_threshold, verify_model], outputs=[verify_result_plot, verify_json] ) gr.Markdown(""" ### 📋 How to use Face Verification: 1. Upload two facial images 2. Adjust the similarity threshold if needed 3. Select a face recognition model 4. Click "Verify Faces" button 5. View the results below """) with gr.TabItem("Find Faces"): with gr.Row(): query_img = gr.Image(label="Query Image (Face to find)", type="pil") with gr.Row(): with gr.Column(): db_path_input = gr.Textbox(label="Database Path (folder containing images to search in)") db_files_input = gr.File(label="Or upload images for database", file_count="multiple") with gr.Row(): with gr.Column(): find_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05, label="Similarity Threshold (lower = stricter matching)") with gr.Column(): find_model = gr.Dropdown( choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"], value="VGG-Face", label="Face Recognition Model" ) find_button = gr.Button("Find Matching Faces", variant="primary") with gr.Row(): find_result_plot = gr.Plot(label="Search Results") with gr.Row(): find_results_table = gr.JSON(label="Detailed Results") # Connect function to button find_button.click( find_faces, inputs=[query_img, db_path_input, find_threshold, find_model], outputs=[find_result_plot, find_results_table] ) # Also connect with files input db_files_input.change( lambda x: "", # Clear the text input when files are uploaded inputs=db_files_input, outputs=db_path_input ) gr.Markdown(""" ### 📋 How to use Face Finding: 1. Upload a query image containing the face you want to find 2. Either: - Enter the path to a folder containing images to search through, or - Upload multiple images to create a temporary database 3. Adjust the similarity threshold if needed 4. Select a face recognition model 5. Click "Find Matching Faces" button 6. View the results showing the most similar faces """) with gr.TabItem("Analyze Face"): with gr.Row(): analyze_img = gr.Image(label="Upload Image for Analysis", type="pil") with gr.Row(): actions_checkboxes = gr.CheckboxGroup( choices=["age", "gender", "race", "emotion"], value=["age", "gender", "race", "emotion"], label="Select Attributes to Analyze" ) analyze_button = gr.Button("Analyze Face", variant="primary") with gr.Row(): analyze_result_plot = gr.Plot(label="Analysis Results") with gr.Row(): analyze_json = gr.JSON(label="Detailed Analysis") # Connect function to button analyze_button.click( analyze_face, inputs=[analyze_img, actions_checkboxes], outputs=[analyze_result_plot, analyze_json] ) gr.Markdown(""" ### 📋 How to use Facial Analysis: 1. Upload an image containing one or more faces 2. Select which attributes you want to analyze 3. Click "Analyze Face" button 4. View the visual results and detailed JSON data ### 📊 Understanding the results: - The tool can detect multiple faces in a single image - For each face, it provides: - Estimated age - Predicted gender with confidence - Predicted race/ethnicity with confidence - Detected emotional expression with confidence - The JSON output provides detailed confidence scores for all categories """) # Launch the app demo.launch()