# Install required packages import os import subprocess import sys import importlib import pkg_resources def install_package(package, version=None): package_spec = f"{package}=={version}" if version else package print(f"Installing {package_spec}...") try: subprocess.check_call([sys.executable, "-m", "pip", "install", "--no-cache-dir", package_spec]) except subprocess.CalledProcessError as e: print(f"Failed to install {package_spec}: {e}") raise def ensure_package(package, version=None): try: if version: pkg_resources.require(f"{package}=={version}") else: importlib.import_module(package) print(f"{package} is already installed with the correct version.") except (ImportError, pkg_resources.VersionConflict, pkg_resources.DistributionNotFound) as e: print(f"Package requirement failed: {e}") install_package(package, version) # Check environment and install dependencies if not os.path.exists("/.dockerenv") and not os.path.exists("/kaggle"): print("Setting up environment...") # Install core dependencies ensure_package("numpy", "1.23.5") ensure_package("protobuf", "3.20.3") ensure_package("tensorflow", "2.10.0") ensure_package("opencv-python-headless", "4.7.0.72") ensure_package("deepface", "0.0.79") ensure_package("gradio", "3.50.2") # Install additional required packages for pkg in ["matplotlib", "pillow", "pandas"]: ensure_package(pkg) # Now import the required modules import gradio as gr import json import cv2 import numpy as np from deepface import DeepFace import matplotlib.pyplot as plt from PIL import Image import tempfile import pandas as pd import shutil # Google Drive integration (for Colab users) if 'google.colab' in sys.modules: from google.colab import drive drive.mount('/content/drive') def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"): temp_dir = tempfile.mkdtemp() img1_path = os.path.join(temp_dir, "image1.jpg") img2_path = os.path.join(temp_dir, "image2.jpg") try: # Save images if isinstance(img1, np.ndarray): Image.fromarray(img1).save(img1_path) else: img1.save(img1_path) if isinstance(img2, np.ndarray): Image.fromarray(img2).save(img2_path) else: img2.save(img2_path) # Perform verification result = DeepFace.verify( img1_path=img1_path, img2_path=img2_path, model_name=model, distance_metric="cosine", threshold=threshold ) # Create visualization fig, ax = plt.subplots(1, 2, figsize=(10, 5)) img1_display = cv2.imread(img1_path) img1_display = cv2.cvtColor(img1_display, cv2.COLOR_BGR2RGB) img2_display = cv2.imread(img2_path) img2_display = cv2.cvtColor(img2_display, cv2.COLOR_BGR2RGB) ax[0].imshow(img1_display) ax[0].set_title("Image 1") ax[0].axis("off") ax[1].imshow(img2_display) ax[1].set_title("Image 2") ax[1].axis("off") verification_result = "✅ FACE MATCHED" if result["verified"] else "❌ FACE NOT MATCHED" confidence = round((1 - result["distance"]) * 100, 2) plt.suptitle(f"{verification_result}\nConfidence: {confidence}%\nDistance: {result['distance']:.4f}", fontsize=16, fontweight='bold', color='green' if result["verified"] else 'red') plt.tight_layout() # Clean up os.remove(img1_path) os.remove(img2_path) os.rmdir(temp_dir) return fig, result # Return raw dict instead of JSON string except Exception as e: # Clean up even if error occurs if os.path.exists(img1_path): os.remove(img1_path) if os.path.exists(img2_path): os.remove(img2_path) if os.path.exists(temp_dir): os.rmdir(temp_dir) error_msg = str(e) if "No face detected" in error_msg: error_msg = "No face detected in one or both images. Please try different images." return None, {"error": error_msg} def find_faces(query_img, db_folder, threshold=0.70, model="VGG-Face"): temp_dir = tempfile.mkdtemp() query_path = os.path.join(temp_dir, "query.jpg") try: # Save query image if isinstance(query_img, np.ndarray): Image.fromarray(query_img).save(query_path) else: query_img.save(query_path) # Handle database path if isinstance(db_folder, str): if db_folder.startswith("/content/drive"): db_path = db_folder else: db_path = os.path.abspath(db_folder) if not os.path.exists(db_path): return None, {"error": "Invalid database path - directory does not exist"} else: db_path = os.path.join(temp_dir, "db") os.makedirs(db_path, exist_ok=True) for i, file in enumerate(db_folder): orig_filename = file.orig_name file_ext = os.path.splitext(orig_filename)[1] new_filename = f"image_{i}{file_ext}" shutil.copy(file.name, os.path.join(db_path, new_filename)) # Find matches dfs = DeepFace.find( img_path=query_path, db_path=db_path, model_name=model, distance_metric="cosine", threshold=threshold, silent=True ) # Process results if isinstance(dfs, list): if len(dfs) == 0: return None, {"error": "No matching faces found in the database."} df = dfs[0] else: df = dfs if df.empty: return None, {"error": "No matching faces found in the database."} df = df.sort_values(by=["distance"]) # Create visualization num_matches = min(4, len(df)) fig, axes = plt.subplots(1, num_matches + 1, figsize=(15, 5)) query_display = cv2.imread(query_path) query_display = cv2.cvtColor(query_display, cv2.COLOR_BGR2RGB) axes[0].imshow(query_display) axes[0].set_title("Query Image") axes[0].axis("off") valid_matches = 0 for i in range(num_matches): if i >= len(df): break match_path = df.iloc[i]["identity"] if not os.path.exists(match_path): continue try: match_img = cv2.imread(match_path) if match_img is None: continue match_img = cv2.cvtColor(match_img, cv2.COLOR_BGR2RGB) axes[valid_matches+1].imshow(match_img) axes[valid_matches+1].set_title(f"Match #{valid_matches+1}") axes[valid_matches+1].axis("off") valid_matches += 1 except Exception as e: continue # Hide empty axes for j in range(valid_matches+1, num_matches+1): axes[j].axis("off") plt.suptitle(f"Found {len(df)} matching faces", fontsize=16, fontweight='bold') plt.tight_layout() # Prepare results results = df[["identity", "distance"]].copy() results["confidence"] = (1 - results["distance"]) * 100 results["confidence"] = results["confidence"].round(2) results = results.rename(columns={"identity": "Image Path"}).to_dict('records') return fig, results except Exception as e: error_msg = str(e) if "No face detected" in error_msg: error_msg = "No face detected in the query image. Please try a different image." elif "No such file or directory" in error_msg: error_msg = "Invalid database path or corrupted image files" return None, {"error": error_msg} finally: # Clean up if os.path.exists(query_path): os.remove(query_path) if 'db_path' in locals() and not isinstance(db_folder, str): shutil.rmtree(db_path, ignore_errors=True) def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']): temp_dir = tempfile.mkdtemp() img_path = os.path.join(temp_dir, "analyze.jpg") try: # Save image if isinstance(img, np.ndarray): Image.fromarray(img).save(img_path) else: img.save(img_path) # Analyze image results = DeepFace.analyze( img_path=img_path, actions=actions, enforce_detection=True, detector_backend='opencv' ) # Process results if isinstance(results, list): num_faces = len(results) else: num_faces = 1 results = [results] # Create visualization fig = plt.figure(figsize=(14, 7)) img_display = cv2.imread(img_path) img_display = cv2.cvtColor(img_display, cv2.COLOR_BGR2RGB) main_ax = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2) main_ax.imshow(img_display) main_ax.set_title(f"Analyzed Image ({num_faces} face{'s' if num_faces > 1 else ''} detected)") main_ax.axis('off') for i, face_result in enumerate(results[:4]): # Get analysis data age = face_result.get('age', 'N/A') gender = face_result.get('dominant_gender', 'N/A') race = face_result.get('dominant_race', 'N/A') emotion = face_result.get('dominant_emotion', 'N/A') # Create subplot ax = plt.subplot2grid((2, 4), (0 if i < 2 else 1, 2 + (i % 2))) text = f"Face #{i+1}\n\nAge: {age}\nGender: {gender}\nRace: {race}\nEmotion: {emotion}" ax.text(0.5, 0.5, text, ha='center', va='center', fontsize=11) ax.axis('off') plt.tight_layout() # Format results formatted_results = [] for i, res in enumerate(results[:8]): face_data = { "face_number": i+1, "age": res.get("age", "N/A"), "gender": res.get("dominant_gender", "N/A"), "race": res.get("dominant_race", "N/A"), "emotion": res.get("dominant_emotion", "N/A") } formatted_results.append(face_data) return fig, formatted_results except Exception as e: error_msg = str(e) if "No face detected" in error_msg: error_msg = "No face detected in the image. Please try a different image." return None, {"error": error_msg} finally: # Clean up if os.path.exists(img_path): os.remove(img_path) if os.path.exists(temp_dir): os.rmdir(temp_dir) # Create Gradio interface with gr.Blocks(title="Complete Face Recognition Tool", theme=gr.themes.Soft()) as demo: gr.Markdown(""" # 🔍 Complete Face Recognition Tool This tool provides three face recognition features: - **Verify Faces**: Compare two images to check if they contain the same person - **Find Faces**: Search for matching faces in a database/folder - **Analyze Face**: Determine age, gender, race, and emotion from facial images """) with gr.Tabs(): # Verify Faces Tab with gr.TabItem("Verify Faces"): with gr.Row(): img1 = gr.Image(label="First Image", type="pil") img2 = gr.Image(label="Second Image", type="pil") with gr.Row(): verify_threshold = gr.Slider(0.1, 0.9, value=0.6, step=0.05, label="Similarity Threshold (lower = stricter)") verify_model = gr.Dropdown( choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"], value="VGG-Face", label="Recognition Model" ) verify_btn = gr.Button("Verify Faces", variant="primary") with gr.Row(): verify_plot = gr.Plot(label="Comparison Result") verify_results = gr.JSON(label="Verification Details") # Find Faces Tab with gr.TabItem("Find Faces"): query_img = gr.Image(label="Query Image", type="pil") with gr.Row(): db_path = gr.Textbox( label="Database Path", placeholder="/content/drive/MyDrive/your_folder or local path" ) db_files = gr.File(label="Or upload images", file_count="multiple") with gr.Row(): find_threshold = gr.Slider(0.1, 0.9, value=0.6, step=0.05, label="Similarity Threshold") find_model = gr.Dropdown( choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"], value="VGG-Face", label="Recognition Model" ) find_btn = gr.Button("Find Matches", variant="primary") with gr.Row(): find_plot = gr.Plot(label="Matching Results") find_results = gr.JSON(label="Match Details") # Analyze Face Tab with gr.TabItem("Analyze Face"): analyze_img = gr.Image(label="Input Image", type="pil") analyze_actions = gr.CheckboxGroup( choices=["age", "gender", "race", "emotion"], value=["age", "gender", "race", "emotion"], label="Analysis Features" ) analyze_btn = gr.Button("Analyze Face", variant="primary") with gr.Row(): analyze_plot = gr.Plot(label="Analysis Visualization") analyze_results = gr.JSON(label="Detailed Analysis") # Event handlers verify_btn.click( verify_faces, inputs=[img1, img2, verify_threshold, verify_model], outputs=[verify_plot, verify_results] ) find_btn.click( find_faces, inputs=[query_img, db_path, find_threshold, find_model], outputs=[find_plot, find_results] ) db_files.change( lambda x: "", inputs=db_files, outputs=db_path ) analyze_btn.click( analyze_face, inputs=[analyze_img, analyze_actions], outputs=[analyze_plot, analyze_results] ) # Launch the app if __name__ == "__main__": demo.launch()