Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,20 @@
|
|
1 |
-
import transformers
|
2 |
import streamlit as st
|
3 |
import io
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
6 |
import cv2
|
|
|
|
|
7 |
import requests
|
8 |
-
import
|
9 |
-
|
10 |
from matplotlib import pyplot as plt
|
11 |
from transformers import pipeline
|
|
|
12 |
from torchvision import transforms
|
13 |
-
|
14 |
-
install tesseract-ocr
|
15 |
-
install pytesseract
|
16 |
-
install tesseract-ocr
|
17 |
-
install libtesseract-dev
|
18 |
-
install -y tesseract-ocr
|
19 |
-
install -y libtesseract-dev
|
20 |
-
install -y tesseract-ocr-rus
|
21 |
-
import pytesseract
|
22 |
-
from bs4 import BeautifulSoup
|
23 |
|
24 |
st.set_page_config(
|
25 |
-
page_title="
|
26 |
page_icon="😎",
|
27 |
layout="wide"
|
28 |
)
|
@@ -31,7 +23,7 @@ st.markdown("### Распознай текст мемориальной доск
|
|
31 |
st.write("Загрузите изображение мемориальной доски в формате png, jpeg, jpg")
|
32 |
|
33 |
|
34 |
-
file = st.file_uploader("Загрузите своё
|
35 |
if file:
|
36 |
image_data = file.getvalue()
|
37 |
# Показ загруженного изображения на Web-странице средствами Streamlit
|
@@ -43,29 +35,11 @@ if file:
|
|
43 |
# preprocessor = AutoImageProcessor.from_pretrained("google/mobilenet_v2_1.0_224")
|
44 |
# model = AutoModelForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224")
|
45 |
|
46 |
-
detector = pipeline(task="image-classification"
|
47 |
|
48 |
st.markdown(detector(image))
|
49 |
-
if file:
|
50 |
-
text = pytesseract.image_to_string(Image.open(io.BytesIO(image_data)), lang='rus')
|
51 |
-
|
52 |
-
|
53 |
-
query = '+'.join(text.split())
|
54 |
-
search_query = f'https://html.duckduckgo.com/html/?q={query}'
|
55 |
-
user_agent = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36'
|
56 |
-
|
57 |
-
# Отправляем запрос на страницу поиска
|
58 |
-
response = requests.get(search_query, headers={'User-Agent': user_agent}, cookies={'kl': 'ru-ru'})
|
59 |
-
|
60 |
-
html_text = response.content.decode('utf-8')
|
61 |
-
|
62 |
-
html = BeautifulSoup(response.text, 'html.parser')
|
63 |
|
64 |
-
# Находим первый результат поиска
|
65 |
-
first_result = html.find('a', class_='result__url')
|
66 |
|
67 |
-
if first_result:
|
68 |
-
st.markdown(first_result.get('href'))
|
69 |
|
70 |
|
71 |
#
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import io
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
import cv2
|
6 |
+
# from transformers import AutoImageProcessor, AutoModelForImageClassification
|
7 |
+
from PIL import Image
|
8 |
import requests
|
9 |
+
import numpy as np
|
|
|
10 |
from matplotlib import pyplot as plt
|
11 |
from transformers import pipeline
|
12 |
+
|
13 |
from torchvision import transforms
|
14 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
st.set_page_config(
|
17 |
+
page_title="MemoryStudies",
|
18 |
page_icon="😎",
|
19 |
layout="wide"
|
20 |
)
|
|
|
23 |
st.write("Загрузите изображение мемориальной доски в формате png, jpeg, jpg")
|
24 |
|
25 |
|
26 |
+
file = st.file_uploader("Загрузите своё фото мемориальной доски:", type=['png','jpeg','jpg'])
|
27 |
if file:
|
28 |
image_data = file.getvalue()
|
29 |
# Показ загруженного изображения на Web-странице средствами Streamlit
|
|
|
35 |
# preprocessor = AutoImageProcessor.from_pretrained("google/mobilenet_v2_1.0_224")
|
36 |
# model = AutoModelForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224")
|
37 |
|
38 |
+
detector = pipeline(task="image-classification")
|
39 |
|
40 |
st.markdown(detector(image))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
42 |
|
|
|
|
|
43 |
|
44 |
|
45 |
#
|