Commit
·
32664e6
1
Parent(s):
aeb0a95
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import streamlit as st
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, LEDForConditionalGeneration
|
5 |
+
from tensorflow.keras.models import load_model
|
6 |
+
from transformers import TFBertForSequenceClassification, BertTokenizer
|
7 |
+
st.set_page_config(page_title="Summarization&tweet_analysis", page_icon="📈",layout="wide")
|
8 |
+
hide_streamlit_style = """
|
9 |
+
<style>
|
10 |
+
#MainMenu {visibility: hidden;}
|
11 |
+
footer {
|
12 |
+
visibility: hidden;
|
13 |
+
|
14 |
+
}
|
15 |
+
footer:after {
|
16 |
+
content:'©2023 Sravathi AI Technology. All rights reserved.';
|
17 |
+
visibility: visible;
|
18 |
+
display: block;
|
19 |
+
position: relative;
|
20 |
+
#background-color: red;
|
21 |
+
padding: 5px;
|
22 |
+
top: 2px;
|
23 |
+
}
|
24 |
+
</style>
|
25 |
+
"""
|
26 |
+
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
27 |
+
import pandas as pd
|
28 |
+
import time
|
29 |
+
import sys
|
30 |
+
import pickle
|
31 |
+
#from stqdm import stqdm
|
32 |
+
import base64
|
33 |
+
#from tensorflow.keras.preprocessing.text import Tokenizer
|
34 |
+
#from tensorflow.keras.preprocessing.sequence import pad_sequences
|
35 |
+
import numpy as np
|
36 |
+
import json
|
37 |
+
import os
|
38 |
+
import re
|
39 |
+
|
40 |
+
#from tensorflow.keras.models import load_model
|
41 |
+
#st.write("API examples - Dermatophagoides, Miconazole, neomycin,Iothalamate")
|
42 |
+
|
43 |
+
#background_image = sys.path[1]+"/streamlit_datafile_links/audience-1853662_960_720.jpg" # Path to your background image
|
44 |
+
def add_bg_from_local(image_file):
|
45 |
+
with open(image_file, "rb") as image_file:
|
46 |
+
encoded_string = base64.b64encode(image_file.read())
|
47 |
+
st.markdown(
|
48 |
+
f"""
|
49 |
+
<style>
|
50 |
+
.stApp {{
|
51 |
+
background-image: url(data:image/{"jpg"};base64,{encoded_string.decode()});
|
52 |
+
background-size: cover
|
53 |
+
}}
|
54 |
+
</style>
|
55 |
+
""",
|
56 |
+
unsafe_allow_html=True
|
57 |
+
)
|
58 |
+
#add_bg_from_local(background_image)
|
59 |
+
|
60 |
+
#@st.cache
|
61 |
+
st.header('Summarization & tweet_analysis')
|
62 |
+
def convert_df(df):
|
63 |
+
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
64 |
+
return df.to_csv(index=False).encode('utf-8')
|
65 |
+
col1, col2 = st.columns([4,1])
|
66 |
+
result_csv_batch_sql = result_csv_batch_fail=result_csv_batch=result_csv4=result_csv3=result_csv1=result_csv2=0
|
67 |
+
|
68 |
+
with col1:
|
69 |
+
models = st.selectbox(
|
70 |
+
'Select the option',
|
71 |
+
('summarization_model1','tweet_analysis' ))
|
72 |
+
#try:
|
73 |
+
if models == 'summarization_model1':
|
74 |
+
st.markdown("")
|
75 |
+
else:
|
76 |
+
st.markdown("")
|
77 |
+
with st.form("form1"):
|
78 |
+
hide_label = """
|
79 |
+
<style>
|
80 |
+
.css-9ycgxx {
|
81 |
+
display: none;
|
82 |
+
}
|
83 |
+
</style>
|
84 |
+
"""
|
85 |
+
text_data = st.text_input('Enter the text')
|
86 |
+
print(text_data)
|
87 |
+
st.markdown(hide_label, unsafe_allow_html=True)
|
88 |
+
submitted = st.form_submit_button("Submit")
|
89 |
+
if submitted:
|
90 |
+
if models == 'summarization_model1':
|
91 |
+
#torch.cuda.set_device(2)
|
92 |
+
tokenizer = AutoTokenizer.from_pretrained('allenai/PRIMERA-multinews')
|
93 |
+
model = LEDForConditionalGeneration.from_pretrained('allenai/PRIMERA-multinews')
|
94 |
+
#device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # get the device
|
95 |
+
device = "cpu"
|
96 |
+
model.to(device) # move the model to the device
|
97 |
+
documents = text_data
|
98 |
+
|
99 |
+
# Tokenize and encode the documents
|
100 |
+
inputs = tokenizer(documents, return_tensors='pt', padding=True, truncation=True,max_length=1000000)
|
101 |
+
|
102 |
+
# Move the inputs to the device
|
103 |
+
inputs = inputs.to(device)
|
104 |
+
|
105 |
+
# Generate summaries
|
106 |
+
outputs = model.generate(**inputs,max_length=1000000)
|
107 |
+
|
108 |
+
# Decode the summaries
|
109 |
+
st.write(tokenizer.batch_decode(outputs, skip_special_tokens=True))
|
110 |
+
st.success('Prediction done successfully!', icon="✅")
|
111 |
+
else:
|
112 |
+
# Define the custom objects (custom layers) needed for loading the model
|
113 |
+
custom_objects = {"TFBertForSequenceClassification": TFBertForSequenceClassification}
|
114 |
+
|
115 |
+
# Load the best model checkpoint
|
116 |
+
best_model = load_model('best_model_checkpoint_val_acc_0.8697_epoch_03.h5', custom_objects=custom_objects)
|
117 |
+
|
118 |
+
# Assuming you already have the test set DataFrame (df_test) and tokenizer
|
119 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
120 |
+
test_encodings = tokenizer(text_data, padding=True, truncation=True, return_tensors='tf')
|
121 |
+
test_dataset = tf.data.Dataset.from_tensor_slices((dict(test_encodings)))
|
122 |
+
|
123 |
+
# Make predictions on the test set using the loaded model
|
124 |
+
predictions_probabilities = best_model.predict(test_dataset.batch(8))
|
125 |
+
|
126 |
+
# Convert probabilities to one-hot encoded predictions
|
127 |
+
predictions_onehot = np.eye(9)[np.argmax(predictions_probabilities, axis=1)]
|
128 |
+
|
129 |
+
# Display or save the DataFrame with predicted labels
|
130 |
+
index_arg = np.argmax(predictions_probabilities, axis=1)
|
131 |
+
# Later, you can load the LabelEncoder
|
132 |
+
label_encoder = joblib.load('label_encoder.joblib')
|
133 |
+
result_label = label_encoder.inverse_transform(index_arg)
|
134 |
+
|
135 |
+
# Display or save the DataFrame with predicted labels
|
136 |
+
st.write("Item name: ", result_label[0])
|
137 |
+
|
138 |
+
from transformers import AutoTokenizer, AutoConfig, AutoModelForSequenceClassification
|
139 |
+
from scipy.special import softmax
|
140 |
+
|
141 |
+
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest"
|
142 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
143 |
+
config = AutoConfig.from_pretrained(MODEL)
|
144 |
+
# PT
|
145 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
146 |
+
#model.save_pretrained(MODEL)
|
147 |
+
#text = "Covid cases are increasing fast!"
|
148 |
+
pred_label = []
|
149 |
+
pred_scor = []
|
150 |
+
def preprocess(text):
|
151 |
+
new_text = []
|
152 |
+
for t in text.split(" "):
|
153 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
154 |
+
t = 'http' if t.startswith('http') else t
|
155 |
+
new_text.append(t)
|
156 |
+
return " ".join(new_text)
|
157 |
+
def predict_pret(text):
|
158 |
+
#print(text)
|
159 |
+
text = preprocess(text)
|
160 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
161 |
+
output = model(**encoded_input)
|
162 |
+
scores = output[0][0].detach().numpy()
|
163 |
+
scores = softmax(scores)
|
164 |
+
|
165 |
+
ranking = np.argsort(scores)
|
166 |
+
ranking = ranking[::-1]
|
167 |
+
l = config.id2label[ranking[0]]
|
168 |
+
s = scores[ranking[0]]
|
169 |
+
return l,s
|
170 |
+
|
171 |
+
l,s = predict_pret(text_data)
|
172 |
+
|
173 |
+
st.write("Sentiment is: ", l)
|
174 |
+
|
175 |
+
st.success('Prediction done successfully!', icon="✅")
|
176 |
+
_='''
|
177 |
+
except Exception as e:
|
178 |
+
if 'NoneType' or 'not defined' in str(e):
|
179 |
+
st.warning('Enter the required inputs', icon="⚠️")
|
180 |
+
else:
|
181 |
+
st.warning(str(e), icon="⚠️")
|
182 |
+
'''
|
183 |
+
|
184 |
+
for i in range(30):
|
185 |
+
st.markdown('##')
|