Nandoguer commited on
Commit
62cdbbe
·
verified ·
1 Parent(s): 11f11a1

Delete NLP_Final.py

Browse files
Files changed (1) hide show
  1. NLP_Final.py +0 -139
NLP_Final.py DELETED
@@ -1,139 +0,0 @@
1
- from transformers import pipeline, RobertaTokenizer, RobertaForSequenceClassification
2
- from sklearn.feature_extraction.text import CountVectorizer
3
- from sklearn.naive_bayes import MultinomialNB
4
- from sklearn.pipeline import make_pipeline
5
- from datasets import load_dataset
6
- from PIL import Image, ImageDraw, ImageFont
7
- import textwrap
8
- import random
9
- from diffusers import StableDiffusionPipeline
10
- import torch
11
- from sklearn.metrics import classification_report, accuracy_score, f1_score
12
- from sklearn.model_selection import train_test_split # Import train_test_split
13
- import gradio as gr
14
-
15
- # Load the datasets for emotion detection and quotes
16
- emotion_dataset = load_dataset("dair-ai/emotion")
17
- quotes_dataset = load_dataset("Abirate/english_quotes")
18
-
19
- # Prepare the Bag-of-Words Model
20
- vectorizer = CountVectorizer()
21
- naive_bayes_classifier = MultinomialNB()
22
- bow_pipeline = make_pipeline(vectorizer, naive_bayes_classifier)
23
- texts = [example['text'] for example in emotion_dataset['train']]
24
- labels = [example['label'] for example in emotion_dataset['train']]
25
- train_texts, test_texts, train_labels, test_labels = train_test_split(texts, labels, test_size=0.2, random_state=42)
26
- bow_pipeline.fit(train_texts, train_labels) # Train the Bag-of-Words model
27
- predicted_labels = bow_pipeline.predict(test_texts)
28
- print("Bag-of-Words Model Evaluation Metrics:")
29
- print(classification_report(test_labels, predicted_labels))
30
- print("Accuracy:", accuracy_score(test_labels, predicted_labels))
31
- print("F1 Score:", f1_score(test_labels, predicted_labels, average='weighted'))
32
-
33
- # Load the emotion classification models
34
- distilbert_classifier = pipeline('text-classification', model='bhadresh-savani/distilbert-base-uncased-emotion')
35
- roberta_tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
36
- roberta_model = RobertaForSequenceClassification.from_pretrained('roberta-base')
37
-
38
- # Assuming there's a test split for evaluation
39
- test_data = emotion_dataset['test']
40
- test_texts = [example['text'] for example in test_data]
41
- test_labels = [example['label'] for example in test_data]
42
- label_mapping = {0: 'sadness', 1: 'joy', 2: 'love', 3: 'anger', 4: 'fear', 5: 'surprise'}
43
- test_labels = [label_mapping[label].lower() for label in test_labels]
44
- '''
45
- # Evaluate DistilBERT
46
- distilbert_predictions = [distilbert_classifier(text)[0]['label'].lower() for text in test_texts]
47
- print("DistilBERT Model Evaluation Metrics:")
48
- print("Accuracy:", accuracy_score(test_labels, distilbert_predictions))
49
- print("F1 Score:", f1_score(test_labels, distilbert_predictions, average='weighted'))
50
- '''
51
-
52
- # Function to generate an image from a prompt using Stable Diffusion
53
- def generate_image(prompt):
54
- try:
55
- pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", variant="fp16", torch_dtype=torch.float16).to("cuda")
56
- output = pipe(prompt=prompt)
57
- image = output.images[0]
58
- image.save("output_image.png")
59
- return "output_image.png"
60
- except Exception as e:
61
- print(f"Failed during the image generation process: {e}")
62
- return None
63
-
64
- # Function to create an image with the quote
65
- def create_image_with_quote(quote, author, emotion):
66
- prompt = f"{emotion} themed image"
67
- img_path = generate_image(prompt)
68
- if not img_path:
69
- print("Image generation failed.")
70
- return None
71
- img = Image.open(img_path)
72
- d = ImageDraw.Draw(img)
73
- quote_font = ImageFont.load_default()
74
- author_font = ImageFont.load_default()
75
- quote_wrapped = textwrap.fill(quote, width=40)
76
- author_wrapped = textwrap.fill(f"- {author}", width=40)
77
- draw_text_with_background(d, quote_wrapped, author_wrapped, quote_font, author_font,img.width, img.height)
78
- return img
79
-
80
- def draw_text_with_background(d, quote, author, quote_font, author_font, img_width, img_height):
81
- # Calculate text bounding boxes
82
- quote_bbox = d.textbbox((0, 0), quote, font=quote_font)
83
- author_bbox = d.textbbox((0, 0), author, font=author_font)
84
-
85
- # Calculate the position for the quote
86
- quote_x = (img_width - (quote_bbox[2] - quote_bbox[0])) / 2
87
- quote_y = (img_height - (quote_bbox[3] - quote_bbox[1])) / 2 - 20 # Slightly above the center
88
-
89
- # Calculate the position for the author
90
- author_x = (img_width - (author_bbox[2] - author_bbox[0])) / 2
91
- author_y = quote_y + (quote_bbox[3] - quote_bbox[1]) + 10 # Just below the quote
92
-
93
- # Draw background for quote
94
- d.rectangle([quote_x - 10, quote_y - 5, quote_x + (quote_bbox[2] - quote_bbox[0]) + 10, quote_y + (quote_bbox[3] - quote_bbox[1]) + 5], fill=(255, 255, 255, 128))
95
- # Draw background for author
96
- d.rectangle([author_x - 10, author_y - 5, author_x + (author_bbox[2] - author_bbox[0]) + 10, author_y + (author_bbox[3] - author_bbox[1]) + 5], fill=(255, 255, 255, 128))
97
-
98
- # Draw text over the boxes
99
- d.text((quote_x, quote_y), quote, font=quote_font, fill="black")
100
- d.text((author_x, author_y), author, font=author_font, fill="black")
101
-
102
-
103
-
104
-
105
- def predict_emotion(text, model_choice):
106
- if model_choice == 'distilbert':
107
- result = distilbert_classifier(text)
108
- return result[0]['label'].lower()
109
- elif model_choice == 'bow':
110
- prediction = bow_pipeline.predict([text])[0]
111
- return 'positive' if prediction == 1 else 'negative'
112
- elif model_choice == 'roberta':
113
- inputs = roberta_tokenizer(text, return_tensors="pt", padding=True, truncation=True)
114
- outputs = roberta_model(**inputs)
115
- prediction = torch.argmax(outputs.logits, dim=-1)
116
- return 'positive' if prediction.item() == 1 else 'negative'
117
-
118
- def evaluate_quotes_for_emotion(emotion):
119
- # Filter quotes based on the predicted emotion
120
- suitable_quotes = [q for q in quotes_dataset['train'] if emotion.lower() in q['tags']]
121
- if not suitable_quotes:
122
- suitable_quotes = quotes_dataset['train'] # fallback to any quote if no tags match
123
- selected_quote = random.choice(suitable_quotes)
124
- return selected_quote['quote'], selected_quote.get('author', 'Unknown')
125
-
126
- def predict_emotion_and_generate_quote(feelings, model_choice):
127
- emotion = predict_emotion(feelings, model_choice)
128
- quote, author = evaluate_quotes_for_emotion(emotion)
129
- image = create_image_with_quote(quote, author, emotion)
130
- return quote, author, image
131
-
132
- iface = gr.Interface(fn=predict_emotion_and_generate_quote,
133
- inputs=["text", "text"],
134
- outputs=["text", "text", "image"],
135
- title="Quote Generator: Feeling's Inspired",
136
- description="Enter your feelings and choose a model to receive an inspiring quote with an accompanying image. Model Choices include distilbert,roberta,bow",
137
- allow_flagging=False,
138
- theme="default")
139
- iface.launch()