Spaces:
Runtime error
Runtime error
from transformers import pipeline, RobertaTokenizer, RobertaForSequenceClassification | |
from sklearn.feature_extraction.text import CountVectorizer | |
from sklearn.naive_bayes import MultinomialNB | |
from sklearn.pipeline import make_pipeline | |
from datasets import load_dataset | |
from PIL import Image, ImageDraw, ImageFont | |
import textwrap | |
import random | |
from diffusers import StableDiffusionPipeline | |
import torch | |
from sklearn.metrics import classification_report, accuracy_score, f1_score | |
from sklearn.model_selection import train_test_split # Import train_test_split | |
import gradio as gr | |
# Load the datasets for emotion detection and quotes | |
emotion_dataset = load_dataset("dair-ai/emotion",trust_remote_code=True) | |
quotes_dataset = load_dataset("Abirate/english_quotes",trust_remote_code=True) | |
# Prepare the Bag-of-Words Model | |
vectorizer = CountVectorizer() | |
naive_bayes_classifier = MultinomialNB() | |
bow_pipeline = make_pipeline(vectorizer, naive_bayes_classifier) | |
texts = [example['text'] for example in emotion_dataset['train']] | |
labels = [example['label'] for example in emotion_dataset['train']] | |
train_texts, test_texts, train_labels, test_labels = train_test_split(texts, labels, test_size=0.2, random_state=42) | |
bow_pipeline.fit(train_texts, train_labels) # Train the Bag-of-Words model | |
predicted_labels = bow_pipeline.predict(test_texts) | |
print("Bag-of-Words Model Evaluation Metrics:") | |
print(classification_report(test_labels, predicted_labels)) | |
print("Accuracy:", accuracy_score(test_labels, predicted_labels)) | |
print("F1 Score:", f1_score(test_labels, predicted_labels, average='weighted')) | |
# Load the emotion classification models | |
distilbert_classifier = pipeline('text-classification', model='bhadresh-savani/distilbert-base-uncased-emotion') | |
roberta_tokenizer = RobertaTokenizer.from_pretrained('roberta-base') | |
roberta_model = RobertaForSequenceClassification.from_pretrained('roberta-base') | |
# Assuming there's a test split for evaluation | |
test_data = emotion_dataset['test'] | |
test_texts = [example['text'] for example in test_data] | |
test_labels = [example['label'] for example in test_data] | |
label_mapping = {0: 'sadness', 1: 'joy', 2: 'love', 3: 'anger', 4: 'fear', 5: 'surprise'} | |
test_labels = [label_mapping[label].lower() for label in test_labels] | |
''' | |
# Evaluate DistilBERT | |
distilbert_predictions = [distilbert_classifier(text)[0]['label'].lower() for text in test_texts] | |
print("DistilBERT Model Evaluation Metrics:") | |
print("Accuracy:", accuracy_score(test_labels, distilbert_predictions)) | |
print("F1 Score:", f1_score(test_labels, distilbert_predictions, average='weighted')) | |
# Evaluate RoBERTa | |
roberta_predictions = [] | |
for text in test_texts: | |
inputs = roberta_tokenizer(text, return_tensors="pt", padding=True, truncation=True) | |
outputs = roberta_model(**inputs) | |
prediction = torch.argmax(outputs.logits, dim=-1).item() | |
roberta_predictions.append(label_mapping[prediction].lower()) | |
print("RoBERTa Model Evaluation Metrics:") | |
print("Accuracy:", accuracy_score(test_labels, roberta_predictions)) | |
print("F1 Score:", f1_score(test_labels, roberta_predictions, average='weighted')) | |
''' | |
# Function to generate an image from a prompt using Stable Diffusion | |
def generate_image(prompt): | |
try: | |
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", variant="fp16", torch_dtype=torch.float32)#.to("cuda") | |
output = pipe(prompt=prompt) | |
image = output.images[0] | |
image.save("output_image.png") | |
return "output_image.png" | |
except Exception as e: | |
print(f"Failed during the image generation process: {e}") | |
return None | |
# Function to create an image with the quote | |
def create_image_with_quote(quote, author, emotion): | |
prompt = f"{emotion} themed image" | |
img_path = generate_image(prompt) | |
if not img_path: | |
print("Image generation failed.") | |
return None | |
img = Image.open(img_path) | |
d = ImageDraw.Draw(img) | |
quote_font = ImageFont.load_default() | |
author_font = ImageFont.load_default() | |
quote_wrapped = textwrap.fill(quote, width=40) | |
author_wrapped = textwrap.fill(f"- {author}", width=40) | |
draw_text_with_background(d, quote_wrapped, author_wrapped, quote_font, author_font,img.width, img.height) | |
return img | |
def draw_text_with_background(d, quote, author, quote_font, author_font, img_width, img_height): | |
# Calculate text bounding boxes | |
quote_bbox = d.textbbox((0, 0), quote, font=quote_font) | |
author_bbox = d.textbbox((0, 0), author, font=author_font) | |
# Calculate the position for the quote | |
quote_x = (img_width - (quote_bbox[2] - quote_bbox[0])) / 2 | |
quote_y = (img_height - (quote_bbox[3] - quote_bbox[1])) / 2 - 20 # Slightly above the center | |
# Calculate the position for the author | |
author_x = (img_width - (author_bbox[2] - author_bbox[0])) / 2 | |
author_y = quote_y + (quote_bbox[3] - quote_bbox[1]) + 10 # Just below the quote | |
# Draw background for quote | |
d.rectangle([quote_x - 10, quote_y - 5, quote_x + (quote_bbox[2] - quote_bbox[0]) + 10, quote_y + (quote_bbox[3] - quote_bbox[1]) + 5], fill=(255, 255, 255, 128)) | |
# Draw background for author | |
d.rectangle([author_x - 10, author_y - 5, author_x + (author_bbox[2] - author_bbox[0]) + 10, author_y + (author_bbox[3] - author_bbox[1]) + 5], fill=(255, 255, 255, 128)) | |
# Draw text over the boxes | |
d.text((quote_x, quote_y), quote, font=quote_font, fill="black") | |
d.text((author_x, author_y), author, font=author_font, fill="black") | |
def predict_emotion(text, model_choice): | |
if model_choice == 'distilbert': | |
result = distilbert_classifier(text) | |
return result[0]['label'].lower() | |
elif model_choice == 'bow': | |
prediction = bow_pipeline.predict([text])[0] | |
return 'positive' if prediction == 1 else 'negative' | |
elif model_choice == 'roberta': | |
inputs = roberta_tokenizer(text, return_tensors="pt", padding=True, truncation=True) | |
outputs = roberta_model(**inputs) | |
prediction = torch.argmax(outputs.logits, dim=-1) | |
return 'positive' if prediction.item() == 1 else 'negative' | |
def evaluate_quotes_for_emotion(emotion): | |
# Filter quotes based on the predicted emotion | |
suitable_quotes = [q for q in quotes_dataset['train'] if emotion.lower() in q['tags']] | |
if not suitable_quotes: | |
suitable_quotes = quotes_dataset['train'] # fallback to any quote if no tags match | |
selected_quote = random.choice(suitable_quotes) | |
return selected_quote['quote'], selected_quote.get('author', 'Unknown') | |
def predict_emotion_and_generate_quote(feelings, model_choice): | |
emotion = predict_emotion(feelings, model_choice) | |
quote, author = evaluate_quotes_for_emotion(emotion) | |
image = create_image_with_quote(quote, author, emotion) | |
return quote, author, image | |
iface = gr.Interface(fn=predict_emotion_and_generate_quote, | |
inputs=["text", "text"], | |
outputs=["text", "text", "image"], | |
title="Quote Generator: Feeling's Inspired", | |
description="Enter your feelings and choose a model to receive an inspiring quote with an accompanying image. Model Choices include distilbert,roberta,bow", | |
allow_flagging=False, | |
theme="default") | |
iface.launch() | |