Nandoguer's picture
Update app.py
11f11a1 verified
from transformers import pipeline, RobertaTokenizer, RobertaForSequenceClassification
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import make_pipeline
from datasets import load_dataset
from PIL import Image, ImageDraw, ImageFont
import textwrap
import random
from diffusers import StableDiffusionPipeline
import torch
from sklearn.metrics import classification_report, accuracy_score, f1_score
from sklearn.model_selection import train_test_split # Import train_test_split
import gradio as gr
# Load the datasets for emotion detection and quotes
emotion_dataset = load_dataset("dair-ai/emotion",trust_remote_code=True)
quotes_dataset = load_dataset("Abirate/english_quotes",trust_remote_code=True)
# Prepare the Bag-of-Words Model
vectorizer = CountVectorizer()
naive_bayes_classifier = MultinomialNB()
bow_pipeline = make_pipeline(vectorizer, naive_bayes_classifier)
texts = [example['text'] for example in emotion_dataset['train']]
labels = [example['label'] for example in emotion_dataset['train']]
train_texts, test_texts, train_labels, test_labels = train_test_split(texts, labels, test_size=0.2, random_state=42)
bow_pipeline.fit(train_texts, train_labels) # Train the Bag-of-Words model
predicted_labels = bow_pipeline.predict(test_texts)
print("Bag-of-Words Model Evaluation Metrics:")
print(classification_report(test_labels, predicted_labels))
print("Accuracy:", accuracy_score(test_labels, predicted_labels))
print("F1 Score:", f1_score(test_labels, predicted_labels, average='weighted'))
# Load the emotion classification models
distilbert_classifier = pipeline('text-classification', model='bhadresh-savani/distilbert-base-uncased-emotion')
roberta_tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
roberta_model = RobertaForSequenceClassification.from_pretrained('roberta-base')
# Assuming there's a test split for evaluation
test_data = emotion_dataset['test']
test_texts = [example['text'] for example in test_data]
test_labels = [example['label'] for example in test_data]
label_mapping = {0: 'sadness', 1: 'joy', 2: 'love', 3: 'anger', 4: 'fear', 5: 'surprise'}
test_labels = [label_mapping[label].lower() for label in test_labels]
'''
# Evaluate DistilBERT
distilbert_predictions = [distilbert_classifier(text)[0]['label'].lower() for text in test_texts]
print("DistilBERT Model Evaluation Metrics:")
print("Accuracy:", accuracy_score(test_labels, distilbert_predictions))
print("F1 Score:", f1_score(test_labels, distilbert_predictions, average='weighted'))
# Evaluate RoBERTa
roberta_predictions = []
for text in test_texts:
inputs = roberta_tokenizer(text, return_tensors="pt", padding=True, truncation=True)
outputs = roberta_model(**inputs)
prediction = torch.argmax(outputs.logits, dim=-1).item()
roberta_predictions.append(label_mapping[prediction].lower())
print("RoBERTa Model Evaluation Metrics:")
print("Accuracy:", accuracy_score(test_labels, roberta_predictions))
print("F1 Score:", f1_score(test_labels, roberta_predictions, average='weighted'))
'''
# Function to generate an image from a prompt using Stable Diffusion
def generate_image(prompt):
try:
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", variant="fp16", torch_dtype=torch.float32)#.to("cuda")
output = pipe(prompt=prompt)
image = output.images[0]
image.save("output_image.png")
return "output_image.png"
except Exception as e:
print(f"Failed during the image generation process: {e}")
return None
# Function to create an image with the quote
def create_image_with_quote(quote, author, emotion):
prompt = f"{emotion} themed image"
img_path = generate_image(prompt)
if not img_path:
print("Image generation failed.")
return None
img = Image.open(img_path)
d = ImageDraw.Draw(img)
quote_font = ImageFont.load_default()
author_font = ImageFont.load_default()
quote_wrapped = textwrap.fill(quote, width=40)
author_wrapped = textwrap.fill(f"- {author}", width=40)
draw_text_with_background(d, quote_wrapped, author_wrapped, quote_font, author_font,img.width, img.height)
return img
def draw_text_with_background(d, quote, author, quote_font, author_font, img_width, img_height):
# Calculate text bounding boxes
quote_bbox = d.textbbox((0, 0), quote, font=quote_font)
author_bbox = d.textbbox((0, 0), author, font=author_font)
# Calculate the position for the quote
quote_x = (img_width - (quote_bbox[2] - quote_bbox[0])) / 2
quote_y = (img_height - (quote_bbox[3] - quote_bbox[1])) / 2 - 20 # Slightly above the center
# Calculate the position for the author
author_x = (img_width - (author_bbox[2] - author_bbox[0])) / 2
author_y = quote_y + (quote_bbox[3] - quote_bbox[1]) + 10 # Just below the quote
# Draw background for quote
d.rectangle([quote_x - 10, quote_y - 5, quote_x + (quote_bbox[2] - quote_bbox[0]) + 10, quote_y + (quote_bbox[3] - quote_bbox[1]) + 5], fill=(255, 255, 255, 128))
# Draw background for author
d.rectangle([author_x - 10, author_y - 5, author_x + (author_bbox[2] - author_bbox[0]) + 10, author_y + (author_bbox[3] - author_bbox[1]) + 5], fill=(255, 255, 255, 128))
# Draw text over the boxes
d.text((quote_x, quote_y), quote, font=quote_font, fill="black")
d.text((author_x, author_y), author, font=author_font, fill="black")
def predict_emotion(text, model_choice):
if model_choice == 'distilbert':
result = distilbert_classifier(text)
return result[0]['label'].lower()
elif model_choice == 'bow':
prediction = bow_pipeline.predict([text])[0]
return 'positive' if prediction == 1 else 'negative'
elif model_choice == 'roberta':
inputs = roberta_tokenizer(text, return_tensors="pt", padding=True, truncation=True)
outputs = roberta_model(**inputs)
prediction = torch.argmax(outputs.logits, dim=-1)
return 'positive' if prediction.item() == 1 else 'negative'
def evaluate_quotes_for_emotion(emotion):
# Filter quotes based on the predicted emotion
suitable_quotes = [q for q in quotes_dataset['train'] if emotion.lower() in q['tags']]
if not suitable_quotes:
suitable_quotes = quotes_dataset['train'] # fallback to any quote if no tags match
selected_quote = random.choice(suitable_quotes)
return selected_quote['quote'], selected_quote.get('author', 'Unknown')
def predict_emotion_and_generate_quote(feelings, model_choice):
emotion = predict_emotion(feelings, model_choice)
quote, author = evaluate_quotes_for_emotion(emotion)
image = create_image_with_quote(quote, author, emotion)
return quote, author, image
iface = gr.Interface(fn=predict_emotion_and_generate_quote,
inputs=["text", "text"],
outputs=["text", "text", "image"],
title="Quote Generator: Feeling's Inspired",
description="Enter your feelings and choose a model to receive an inspiring quote with an accompanying image. Model Choices include distilbert,roberta,bow",
allow_flagging=False,
theme="default")
iface.launch()