from datasets import load_dataset dataset = load_dataset("Namitg02/Test") print(dataset) from langchain.docstore.document import Document as LangchainDocument from langchain.text_splitter import RecursiveCharacterTextSplitter splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=15,separators=["\n\n", "\n", " ", ""]) docs = splitter.create_documents(str(dataset)) from langchain_community.embeddings import HuggingFaceEmbeddings embedding_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") from langchain_community.vectorstores import Chroma persist_directory = 'docs/chroma/' vectordb = Chroma.from_documents( documents=docs, embedding=embedding_model, persist_directory=persist_directory ) retriever = vectordb.as_retriever( search_type="similarity", search_kwargs={"k": 2} ) from langchain.prompts import PromptTemplate from langchain.chains import ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory memory = ConversationBufferMemory( memory_key="chat_history", return_messages=True ) from transformers import pipeline from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline from langchain_core.messages import SystemMessage from langchain_core.prompts import HumanMessagePromptTemplate from langchain_core.prompts import ChatPromptTemplate from langchain.prompts import PromptTemplate print("check1") question = "How can I reverse Diabetes?" #template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Use three sentences maximum. Keep the answer as concise as possible. Always say "thanks for asking!" at the end of the answer. #{context} #Question: {question} #Helpful Answer:""" #QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context", "question"],template=template) from transformers import AutoTokenizer from transformers import AutoModelForCausalLM llm_model = "deepset/roberta-base-squad2" tokenizer = AutoTokenizer.from_pretrained(llm_model) model = AutoModelForCausalLM.from_pretrained(llm_model) pipe = pipeline(model = llm_model, tokenizer = tokenizer,trust_remote_code=True, task = "question-answering", temperature=0.2) question = "How can I reverse diabetes?" #docs1 = retriever.invoke(question) docs1 = retriever.invoke(get_relevant_documents) print(docs1[0].page_content) #print(docs1)[0]['generated_text'][-1] print("check2") #question = "How can I reverse diabetes?" print("result") print("check3") #chain = pipe(question = question,context = "Use the following information to answer the question. docs1[0].page_content.") chain = pipe(question = question,context = "Use the following information to answer the question. Diabetes can be cured by eating apples.") print("check3A") print(chain)[0]['generated_text'][-1] print("check3B") import gradio as gr ragdemo = gr.Interface.from_pipeline(chain) print("check4") ragdemo.launch() print("check5")