Update app.py
Browse files
app.py
CHANGED
@@ -19,15 +19,46 @@ tokenizer = AutoTokenizer.from_pretrained(llm_model)
|
|
19 |
|
20 |
#import numpy as np
|
21 |
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
#dataset = load_dataset("not-lain/wikipedia",revision = "embedded")
|
27 |
#dataset = load_dataset("epfl-llm/guidelines", split='train')
|
28 |
#Returns a list of dictionaries, each representing a row in the dataset.
|
29 |
-
print(
|
30 |
-
length = len(
|
31 |
|
32 |
#Itemdetails = dataset.items()
|
33 |
#print(Itemdetails)
|
@@ -39,18 +70,18 @@ embedding_model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
|
39 |
#doc_func = lambda x: x.text
|
40 |
#dataset = list(map(doc_func, dataset))
|
41 |
|
42 |
-
def embedder(
|
43 |
-
embeddings = embedding_model.encode(
|
44 |
-
|
45 |
-
return
|
46 |
-
updated_dataset =
|
47 |
dataset['text'][:length]
|
48 |
|
49 |
#print(embeddings)
|
50 |
|
51 |
print(updated_dataset[1])
|
52 |
print(updated_dataset[2])
|
53 |
-
print(
|
54 |
|
55 |
embedding_dim = embedding_model.get_sentence_embedding_dimension()
|
56 |
#data = FAISS.from_embeddings(embed, embedding_model)
|
|
|
19 |
|
20 |
#import numpy as np
|
21 |
|
22 |
+
from torch.utils.data import Dataset, IterableDataset
|
23 |
+
|
24 |
+
class MyIterableDataset(IterableDataset):
|
25 |
+
def __init__(self, iterable):
|
26 |
+
super().__init__()
|
27 |
+
self.iterable = iterable
|
28 |
+
|
29 |
+
def __iter__(self):
|
30 |
+
return iter(self.iterable)
|
31 |
+
|
32 |
+
class MapStyleDataset(Dataset):
|
33 |
+
def __init__(self, iterable):
|
34 |
+
super().__init__()
|
35 |
+
self.data = list(iterable)
|
36 |
+
|
37 |
+
def __len__(self):
|
38 |
+
return len(self.data)
|
39 |
+
|
40 |
+
def __getitem__(self, idx):
|
41 |
+
return self.data[idx]
|
42 |
+
|
43 |
+
# Create an iterable
|
44 |
+
iterable = "Namitg02/Test"
|
45 |
+
|
46 |
+
# Convert the iterable to a MapStyle dataset
|
47 |
+
map_style_dataset = MapStyleDataset(iterable)
|
48 |
+
|
49 |
+
# Create a DataLoader for the MapStyle dataset
|
50 |
+
data_loader = torch.utils.data.DataLoader(map_style_dataset, batch_size=2)
|
51 |
+
|
52 |
+
|
53 |
+
#datasetiter = load_dataset("Namitg02/Test", split='train', streaming=False)
|
54 |
+
#dataset = to_map_style_dataset(datasetiter)
|
55 |
|
56 |
|
57 |
#dataset = load_dataset("not-lain/wikipedia",revision = "embedded")
|
58 |
#dataset = load_dataset("epfl-llm/guidelines", split='train')
|
59 |
#Returns a list of dictionaries, each representing a row in the dataset.
|
60 |
+
print(map_style_dataset[1])
|
61 |
+
length = len(map_style_dataset)
|
62 |
|
63 |
#Itemdetails = dataset.items()
|
64 |
#print(Itemdetails)
|
|
|
70 |
#doc_func = lambda x: x.text
|
71 |
#dataset = list(map(doc_func, dataset))
|
72 |
|
73 |
+
def embedder(map_style_dataset):
|
74 |
+
embeddings = embedding_model.encode(map_style_dataset["text"])
|
75 |
+
map_style_dataset = map_style_dataset.add_column('embeddings', embeddings)
|
76 |
+
return map_style_dataset
|
77 |
+
updated_dataset = map_style_dataset.map(embedder)
|
78 |
dataset['text'][:length]
|
79 |
|
80 |
#print(embeddings)
|
81 |
|
82 |
print(updated_dataset[1])
|
83 |
print(updated_dataset[2])
|
84 |
+
print(map_style_dataset[1])
|
85 |
|
86 |
embedding_dim = embedding_model.get_sentence_embedding_dimension()
|
87 |
#data = FAISS.from_embeddings(embed, embedding_model)
|