Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,35 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
|
|
|
5 |
model = "openai/whisper-large-v3")
|
6 |
|
|
|
|
|
|
|
7 |
demo = gr.Blocks()
|
8 |
|
9 |
-
|
10 |
-
|
|
|
11 |
gr.Warning("No audio file found, please retry!")
|
12 |
return ""
|
13 |
-
output = asr(filepath)
|
14 |
-
return output["text"]
|
15 |
|
|
|
16 |
mic_transcribe = gr.Interface(
|
17 |
-
fn = transcribe_speech,
|
18 |
inputs = gr.Audio(sources = "microphone",
|
19 |
type = "filepath"),
|
20 |
outputs = gr.Textbox(label = "Transcription",
|
21 |
lines = 3),
|
22 |
-
allow_flagging = "never"
|
23 |
)
|
24 |
|
|
|
25 |
file_transcribe = gr.Interface (
|
26 |
fn = transcribe_speech,
|
27 |
inputs = gr.Audio(sources = "upload",
|
@@ -31,6 +39,8 @@ file_transcribe = gr.Interface (
|
|
31 |
allow_flagging = "never"
|
32 |
)
|
33 |
|
|
|
|
|
34 |
with demo:
|
35 |
gr.TabbedInterface(
|
36 |
[mic_transcribe,
|
@@ -38,4 +48,4 @@ with demo:
|
|
38 |
["Transcribe Microphone",
|
39 |
"Transcribe Audio File"],
|
40 |
)
|
41 |
-
demo.launch()
|
|
|
1 |
+
# Importing gradio for demo application and Transformers to use pipeline
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
4 |
|
5 |
+
# Using the "whisper-large-v3" fine-tuned model for Automatic Speech Recognition ASR tasks
|
6 |
+
asr = pipeline(task = "automatic-speech-recognition",
|
7 |
model = "openai/whisper-large-v3")
|
8 |
|
9 |
+
|
10 |
+
# Set up a Gradio application with the Blocks class, which can be used to define and configure input and output blocks for the application's interface
|
11 |
+
import gradio as gr
|
12 |
demo = gr.Blocks()
|
13 |
|
14 |
+
# Perform speech transcription using the automatic speech recognition (asr) pipeline
|
15 |
+
def transcribe_speech(filepath): #path to the audio file
|
16 |
+
if filepath is None: #if so, it displays a warning and return empty string
|
17 |
gr.Warning("No audio file found, please retry!")
|
18 |
return ""
|
19 |
+
output = asr(filepath) #invokes the asr pipeline on the audio file specified by filepath and
|
20 |
+
return output["text"] #returns the transcribed text from the output dictionary
|
21 |
|
22 |
+
# Initialize a Gradio interface for Microphone Transcribe
|
23 |
mic_transcribe = gr.Interface(
|
24 |
+
fn = transcribe_speech, #specifies the function to be executed when the interface receives input
|
25 |
inputs = gr.Audio(sources = "microphone",
|
26 |
type = "filepath"),
|
27 |
outputs = gr.Textbox(label = "Transcription",
|
28 |
lines = 3),
|
29 |
+
allow_flagging = "never" #specifies whether users are allowed to flag results or not
|
30 |
)
|
31 |
|
32 |
+
# Gradio interface for transcribing speech from an uploaded audio file.
|
33 |
file_transcribe = gr.Interface (
|
34 |
fn = transcribe_speech,
|
35 |
inputs = gr.Audio(sources = "upload",
|
|
|
39 |
allow_flagging = "never"
|
40 |
)
|
41 |
|
42 |
+
# Create a tabbed interface using Gradio, that allows users to switch between two different interfaces:
|
43 |
+
# (mic_transcribe and file_transcribe) for transcribing speech
|
44 |
with demo:
|
45 |
gr.TabbedInterface(
|
46 |
[mic_transcribe,
|
|
|
48 |
["Transcribe Microphone",
|
49 |
"Transcribe Audio File"],
|
50 |
)
|
51 |
+
demo.launch(debug = True )
|