recognizer add
Browse files
app.py
CHANGED
@@ -1,7 +1,27 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
iface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from fastai.vision.all import *
|
3 |
+
|
4 |
+
def greet(name):
|
5 |
+
return "Hello " + name + "!!!"
|
6 |
+
|
7 |
+
def is_cat(x):
|
8 |
+
return x[0].isupper()
|
9 |
+
|
10 |
+
im = PILImage.create("dog.jpg")
|
11 |
+
im.thumbnail((192,192))
|
12 |
+
learner = load_learner("model.pkl")
|
13 |
+
|
14 |
+
categories = ("Dog", "Cat")
|
15 |
+
|
16 |
+
def classify_image(img):
|
17 |
+
pred, ind, probs = learner.predict(img)
|
18 |
+
return dict(zip(categories,map(float,probs)))
|
19 |
+
|
20 |
+
|
21 |
+
print(classify_image(im))
|
22 |
+
|
23 |
+
image = gr.input.Image(shape = (192, 192))
|
24 |
+
label = gr.outputs.Label()
|
25 |
+
examples = ["dog.jpg", "cat.jpg", "dogcat.jpg"]
|
26 |
+
iface = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples =examples)
|
27 |
iface.launch()
|