NIXBLACK commited on
Commit
3277e5d
·
1 Parent(s): 290aeff

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -5
app.py CHANGED
@@ -24,18 +24,22 @@ languages = [
24
  selected_language = st.selectbox('Select the language:', languages)
25
  user_text = st.text_input('Enter the text:')
26
 
27
- encoder = LaserEncoderPipeline(lang=language)
 
 
 
28
 
29
  user_text_embedding = encoder.encode_sentences([user_text])[0]
30
  user_text_embedding = np.reshape(user_text_embedding, (1, -1))
31
 
32
  predicted_sentiment = np.argmax(model.predict(user_text_embedding))
33
  predicted_sentiment_no = label_encoder.inverse_transform([predicted_sentiment])[0]
 
34
  if predicted_sentiment_no == 1:
35
- predicted_sentiment_label = 'neutral'
36
  elif predicted_sentiment_no == 2:
37
- predicted_sentiment_label = 'positive'
38
  else:
39
- predicted_sentiment_label = 'negative'
40
 
41
- st.write("Predicted Sentiment:" + predicted_sentiment_label)
 
24
  selected_language = st.selectbox('Select the language:', languages)
25
  user_text = st.text_input('Enter the text:')
26
 
27
+ encoder = LaserEncoderPipeline(lang=selected_language) # Fix the variable name
28
+
29
+ target_classes = [1, 2, 3]
30
+ label_encoder.fit(target_classes)
31
 
32
  user_text_embedding = encoder.encode_sentences([user_text])[0]
33
  user_text_embedding = np.reshape(user_text_embedding, (1, -1))
34
 
35
  predicted_sentiment = np.argmax(model.predict(user_text_embedding))
36
  predicted_sentiment_no = label_encoder.inverse_transform([predicted_sentiment])[0]
37
+
38
  if predicted_sentiment_no == 1:
39
+ predicted_sentiment_label = 'neutral'
40
  elif predicted_sentiment_no == 2:
41
+ predicted_sentiment_label = 'positive'
42
  else:
43
+ predicted_sentiment_label = 'negative'
44
 
45
+ st.write("Predicted Sentiment:" + predicted_sentiment_label)