NIXBLACK commited on
Commit
13bf122
·
1 Parent(s): 9177509

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -8,7 +8,7 @@ st.title("Sentiment Analysis with LASER Embeddings")
8
 
9
  label_encoder = LabelEncoder()
10
  # Load the saved model
11
- model = load_model("sentiment_model_2.h5")
12
 
13
  languages = [
14
  "english",
@@ -28,7 +28,8 @@ user_text = st.text_input('Enter the text:')
28
 
29
  encoder = LaserEncoderPipeline(lang=selected_language)
30
 
31
- target_classes = [0, 1]
 
32
  label_encoder.fit(target_classes)
33
 
34
  user_text_embedding = encoder.encode_sentences([user_text])[0]
@@ -40,11 +41,10 @@ predicted_logits = model.predict(user_text_embedding)[0]
40
  # Use softmax to get probability scores
41
  predicted_probabilities = np.exp(predicted_logits) / np.sum(np.exp(predicted_logits))
42
 
43
- predicted_sentiment_no = np.argmax(predicted_probabilities)
44
- predicted_sentiment_label = label_encoder.inverse_transform([predicted_sentiment_no])[0]
45
 
46
  # Display predicted sentiment and probability scores
47
  st.write("Predicted Sentiment:", predicted_sentiment_label)
48
  st.write("Probability Scores:")
49
  for label, probability in zip(target_classes, predicted_probabilities):
50
- st.write(f"{label_encoder.inverse_transform([label])[0]}: {probability:.4f}")
 
8
 
9
  label_encoder = LabelEncoder()
10
  # Load the saved model
11
+ model = load_model("sentiment_model.h5")
12
 
13
  languages = [
14
  "english",
 
28
 
29
  encoder = LaserEncoderPipeline(lang=selected_language)
30
 
31
+ # Update target_classes and fit the label encoder
32
+ target_classes = ['negative', 'positive']
33
  label_encoder.fit(target_classes)
34
 
35
  user_text_embedding = encoder.encode_sentences([user_text])[0]
 
41
  # Use softmax to get probability scores
42
  predicted_probabilities = np.exp(predicted_logits) / np.sum(np.exp(predicted_logits))
43
 
44
+ predicted_sentiment_label = label_encoder.inverse_transform([np.argmax(predicted_probabilities)])[0]
 
45
 
46
  # Display predicted sentiment and probability scores
47
  st.write("Predicted Sentiment:", predicted_sentiment_label)
48
  st.write("Probability Scores:")
49
  for label, probability in zip(target_classes, predicted_probabilities):
50
+ st.write(f"{label}: {probability:.4f}")