Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ st.title("Sentiment Analysis with LASER Embeddings")
|
|
8 |
|
9 |
label_encoder = LabelEncoder()
|
10 |
# Load the saved model
|
11 |
-
model = load_model("
|
12 |
|
13 |
languages = [
|
14 |
"english",
|
@@ -28,7 +28,8 @@ user_text = st.text_input('Enter the text:')
|
|
28 |
|
29 |
encoder = LaserEncoderPipeline(lang=selected_language)
|
30 |
|
31 |
-
target_classes
|
|
|
32 |
label_encoder.fit(target_classes)
|
33 |
|
34 |
user_text_embedding = encoder.encode_sentences([user_text])[0]
|
@@ -40,11 +41,10 @@ predicted_logits = model.predict(user_text_embedding)[0]
|
|
40 |
# Use softmax to get probability scores
|
41 |
predicted_probabilities = np.exp(predicted_logits) / np.sum(np.exp(predicted_logits))
|
42 |
|
43 |
-
|
44 |
-
predicted_sentiment_label = label_encoder.inverse_transform([predicted_sentiment_no])[0]
|
45 |
|
46 |
# Display predicted sentiment and probability scores
|
47 |
st.write("Predicted Sentiment:", predicted_sentiment_label)
|
48 |
st.write("Probability Scores:")
|
49 |
for label, probability in zip(target_classes, predicted_probabilities):
|
50 |
-
st.write(f"{
|
|
|
8 |
|
9 |
label_encoder = LabelEncoder()
|
10 |
# Load the saved model
|
11 |
+
model = load_model("sentiment_model.h5")
|
12 |
|
13 |
languages = [
|
14 |
"english",
|
|
|
28 |
|
29 |
encoder = LaserEncoderPipeline(lang=selected_language)
|
30 |
|
31 |
+
# Update target_classes and fit the label encoder
|
32 |
+
target_classes = ['negative', 'positive']
|
33 |
label_encoder.fit(target_classes)
|
34 |
|
35 |
user_text_embedding = encoder.encode_sentences([user_text])[0]
|
|
|
41 |
# Use softmax to get probability scores
|
42 |
predicted_probabilities = np.exp(predicted_logits) / np.sum(np.exp(predicted_logits))
|
43 |
|
44 |
+
predicted_sentiment_label = label_encoder.inverse_transform([np.argmax(predicted_probabilities)])[0]
|
|
|
45 |
|
46 |
# Display predicted sentiment and probability scores
|
47 |
st.write("Predicted Sentiment:", predicted_sentiment_label)
|
48 |
st.write("Probability Scores:")
|
49 |
for label, probability in zip(target_classes, predicted_probabilities):
|
50 |
+
st.write(f"{label}: {probability:.4f}")
|