Spaces:
Running
Running
Update utils/ingestion.py
Browse files- utils/ingestion.py +45 -111
utils/ingestion.py
CHANGED
@@ -7,150 +7,85 @@ import chromadb
|
|
7 |
|
8 |
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
|
9 |
from docling.datamodel.base_models import InputFormat
|
10 |
-
from docling.datamodel.pipeline_options import
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
)
|
16 |
-
from docling.
|
17 |
-
from
|
|
|
|
|
18 |
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
|
19 |
|
20 |
-
from docx import Document # DOCX support
|
21 |
-
from pptx import Presentation # PPTX support
|
22 |
-
from bs4 import BeautifulSoup # HTML support
|
23 |
-
|
24 |
-
|
25 |
class DocumentProcessor:
|
26 |
def __init__(self):
|
27 |
-
"""Initialize document processor with
|
28 |
self.setup_document_converter()
|
29 |
self.embed_model = FastEmbedEmbeddings()
|
30 |
-
self.client = chromadb.PersistentClient(path="chroma_db")
|
31 |
|
32 |
def setup_document_converter(self):
|
33 |
-
"""Configure document converter
|
34 |
pipeline_options = PdfPipelineOptions()
|
35 |
pipeline_options.do_ocr = True
|
36 |
pipeline_options.do_table_structure = True
|
37 |
-
pipeline_options.table_structure_options.do_cell_matching = True
|
38 |
-
pipeline_options.ocr_options.lang = ["en"]
|
39 |
-
pipeline_options.table_structure_options.mode = TableFormerMode.ACCURATE
|
40 |
-
|
41 |
-
try:
|
42 |
-
pipeline_options.accelerator_options = AcceleratorOptions(
|
43 |
-
num_threads=8, device=AcceleratorDevice.MPS
|
44 |
-
)
|
45 |
-
except Exception:
|
46 |
-
print("β οΈ MPS is not available. Falling back to CPU.")
|
47 |
-
pipeline_options.accelerator_options = AcceleratorOptions(
|
48 |
-
num_threads=8, device=AcceleratorDevice.CPU
|
49 |
-
)
|
50 |
|
51 |
self.converter = DocumentConverter(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
format_options={
|
53 |
InputFormat.PDF: PdfFormatOption(
|
54 |
pipeline_options=pipeline_options,
|
55 |
-
backend=PyPdfiumDocumentBackend
|
56 |
-
)
|
57 |
-
|
|
|
|
|
|
|
58 |
)
|
59 |
|
60 |
-
def extract_chunk_metadata(self, chunk) -> Dict[str, Any]:
|
61 |
-
"""Extract essential metadata from a chunk"""
|
62 |
-
metadata = {
|
63 |
-
"text": chunk.text.strip(),
|
64 |
-
"headings": [],
|
65 |
-
"page_info": None,
|
66 |
-
"content_type": None
|
67 |
-
}
|
68 |
-
|
69 |
-
if hasattr(chunk, 'meta'):
|
70 |
-
if hasattr(chunk.meta, 'headings') and chunk.meta.headings:
|
71 |
-
metadata["headings"] = chunk.meta.headings
|
72 |
-
|
73 |
-
if hasattr(chunk.meta, 'doc_items'):
|
74 |
-
for item in chunk.meta.doc_items:
|
75 |
-
if hasattr(item, 'label'):
|
76 |
-
metadata["content_type"] = str(item.label)
|
77 |
-
|
78 |
-
if hasattr(item, 'prov') and item.prov:
|
79 |
-
for prov in item.prov:
|
80 |
-
if hasattr(prov, 'page_no'):
|
81 |
-
metadata["page_info"] = prov.page_no
|
82 |
-
|
83 |
-
return metadata
|
84 |
-
|
85 |
-
def extract_text_from_docx(self, docx_path: str) -> List[str]:
|
86 |
-
"""Extract text from a DOCX file"""
|
87 |
-
doc = Document(docx_path)
|
88 |
-
return [para.text.strip() for para in doc.paragraphs if para.text.strip()]
|
89 |
-
|
90 |
-
def extract_text_from_pptx(self, pptx_path: str) -> List[str]:
|
91 |
-
"""Extract text from a PPTX file"""
|
92 |
-
ppt = Presentation(pptx_path)
|
93 |
-
slides_text = []
|
94 |
-
for slide in ppt.slides:
|
95 |
-
text = " ".join([shape.text for shape in slide.shapes if hasattr(shape, "text")])
|
96 |
-
if text.strip():
|
97 |
-
slides_text.append(text.strip())
|
98 |
-
return slides_text
|
99 |
-
|
100 |
-
def extract_text_from_html(self, html_path: str) -> List[str]:
|
101 |
-
"""Extract text from an HTML file"""
|
102 |
-
with open(html_path, "r", encoding="utf-8") as file:
|
103 |
-
soup = BeautifulSoup(file, "html.parser")
|
104 |
-
return [text.strip() for text in soup.stripped_strings if text.strip()]
|
105 |
-
|
106 |
def process_document(self, file_path: str):
|
107 |
"""Process document and create searchable index with metadata"""
|
108 |
print(f"π Processing document: {file_path}")
|
109 |
start_time = time.time()
|
110 |
file_ext = Path(file_path).suffix.lower()
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
doc =
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
processed_chunks = []
|
119 |
-
for chunk in chunks:
|
120 |
-
metadata = self.extract_chunk_metadata(chunk)
|
121 |
-
processed_chunks.append(metadata)
|
122 |
-
|
123 |
-
elif file_ext == ".docx":
|
124 |
-
texts = self.extract_text_from_docx(file_path)
|
125 |
-
processed_chunks = [{"text": text, "headings": [], "content_type": "DOCX"} for text in texts]
|
126 |
-
|
127 |
-
elif file_ext == ".pptx":
|
128 |
-
texts = self.extract_text_from_pptx(file_path)
|
129 |
-
processed_chunks = [{"text": text, "headings": [], "content_type": "PPTX"} for text in texts]
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
processed_chunks = [{"text": text, "headings": [], "content_type": "HTML"} for text in texts]
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
print("β
Chunking completed. Creating vector database...")
|
140 |
collection = self.client.get_or_create_collection(name="document_chunks")
|
141 |
|
142 |
-
documents = []
|
143 |
-
embeddings = []
|
144 |
-
metadata_list = []
|
145 |
-
ids = []
|
146 |
-
|
147 |
for idx, chunk in enumerate(processed_chunks):
|
148 |
text = chunk.get('text', '').strip()
|
149 |
if not text:
|
150 |
-
|
151 |
-
continue # Skip empty chunks
|
152 |
|
153 |
-
embedding = self.embed_model.embed_documents([text])[0]
|
154 |
documents.append(text)
|
155 |
embeddings.append(embedding)
|
156 |
metadata_list.append({
|
@@ -168,6 +103,5 @@ class DocumentProcessor:
|
|
168 |
)
|
169 |
print(f"β
Successfully added {len(documents)} chunks to the database.")
|
170 |
|
171 |
-
|
172 |
-
print(f"β
Document processing completed in {processing_time:.2f} seconds")
|
173 |
return collection
|
|
|
7 |
|
8 |
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
|
9 |
from docling.datamodel.base_models import InputFormat
|
10 |
+
from docling.datamodel.pipeline_options import PdfPipelineOptions
|
11 |
+
from docling.document_converter import (
|
12 |
+
DocumentConverter,
|
13 |
+
PdfFormatOption,
|
14 |
+
WordFormatOption,
|
15 |
)
|
16 |
+
from docling.pipeline.simple_pipeline import SimplePipeline
|
17 |
+
from docling.pipeline.standard_pdf_pipeline import StandardPdfPipeline
|
18 |
+
from docling.document import DoclingDocument
|
19 |
+
from docling.chunking.hierarchical_chunker import HierarchicalChunker
|
20 |
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
|
21 |
|
|
|
|
|
|
|
|
|
|
|
22 |
class DocumentProcessor:
|
23 |
def __init__(self):
|
24 |
+
"""Initialize document processor with Docling v2 changes"""
|
25 |
self.setup_document_converter()
|
26 |
self.embed_model = FastEmbedEmbeddings()
|
27 |
+
self.client = chromadb.PersistentClient(path="chroma_db")
|
28 |
|
29 |
def setup_document_converter(self):
|
30 |
+
"""Configure document converter to support multiple formats"""
|
31 |
pipeline_options = PdfPipelineOptions()
|
32 |
pipeline_options.do_ocr = True
|
33 |
pipeline_options.do_table_structure = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
self.converter = DocumentConverter(
|
36 |
+
allowed_formats=[
|
37 |
+
InputFormat.PDF,
|
38 |
+
InputFormat.IMAGE,
|
39 |
+
InputFormat.DOCX,
|
40 |
+
InputFormat.HTML,
|
41 |
+
InputFormat.PPTX,
|
42 |
+
],
|
43 |
format_options={
|
44 |
InputFormat.PDF: PdfFormatOption(
|
45 |
pipeline_options=pipeline_options,
|
46 |
+
backend=PyPdfiumDocumentBackend()
|
47 |
+
),
|
48 |
+
InputFormat.DOCX: WordFormatOption(
|
49 |
+
pipeline_cls=SimplePipeline
|
50 |
+
),
|
51 |
+
},
|
52 |
)
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def process_document(self, file_path: str):
|
55 |
"""Process document and create searchable index with metadata"""
|
56 |
print(f"π Processing document: {file_path}")
|
57 |
start_time = time.time()
|
58 |
file_ext = Path(file_path).suffix.lower()
|
59 |
|
60 |
+
try:
|
61 |
+
conv_result = self.converter.convert(file_path)
|
62 |
+
doc: DoclingDocument = conv_result.document
|
63 |
+
except Exception as e:
|
64 |
+
print(f"β Conversion failed: {e}")
|
65 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
chunker = HierarchicalChunker()
|
68 |
+
chunks = list(chunker.chunk(doc))
|
|
|
69 |
|
70 |
+
processed_chunks = []
|
71 |
+
for chunk in chunks:
|
72 |
+
metadata = {
|
73 |
+
"text": chunk.text.strip(),
|
74 |
+
"headings": [item.text for item in chunk.doc_items if hasattr(item, "text")],
|
75 |
+
"content_type": chunk.doc_items[0].label if chunk.doc_items else "Unknown",
|
76 |
+
}
|
77 |
+
processed_chunks.append(metadata)
|
78 |
|
79 |
print("β
Chunking completed. Creating vector database...")
|
80 |
collection = self.client.get_or_create_collection(name="document_chunks")
|
81 |
|
82 |
+
documents, embeddings, metadata_list, ids = [], [], [], []
|
|
|
|
|
|
|
|
|
83 |
for idx, chunk in enumerate(processed_chunks):
|
84 |
text = chunk.get('text', '').strip()
|
85 |
if not text:
|
86 |
+
continue
|
|
|
87 |
|
88 |
+
embedding = self.embed_model.embed_documents([text])[0]
|
89 |
documents.append(text)
|
90 |
embeddings.append(embedding)
|
91 |
metadata_list.append({
|
|
|
103 |
)
|
104 |
print(f"β
Successfully added {len(documents)} chunks to the database.")
|
105 |
|
106 |
+
print(f"β
Document processing completed in {time.time() - start_time:.2f} seconds")
|
|
|
107 |
return collection
|