Spaces:
No application file
No application file
Create utils/ingest_text.py
Browse files- utils/ingest_text.py +105 -0
utils/ingest_text.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import nest_asyncio # noqa: E402
|
3 |
+
nest_asyncio.apply()
|
4 |
+
|
5 |
+
# bring in our LLAMA_CLOUD_API_KEY
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
load_dotenv()
|
8 |
+
|
9 |
+
##### LLAMAPARSE #####
|
10 |
+
from llama_parse import LlamaParse
|
11 |
+
|
12 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
+
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
|
14 |
+
from langchain_community.vectorstores import Qdrant
|
15 |
+
from langchain_community.document_loaders import DirectoryLoader
|
16 |
+
|
17 |
+
|
18 |
+
llamaparse_api_key = os.getenv("LLAMA_CLOUD_API_KEY")
|
19 |
+
qdrant_url = os.getenv("QDRANT_URL")
|
20 |
+
qdrant_api_key = os.getenv("QDRANT_API_KEY")
|
21 |
+
|
22 |
+
#to_parse_documents = ["./data/example.pdf", "./data/uber_10q_march_2022.pdf"]
|
23 |
+
|
24 |
+
parsed_data_file = r"data/parsed_data.pkl"
|
25 |
+
output_md = r"data/output.md"
|
26 |
+
loki = r"data"
|
27 |
+
|
28 |
+
import pickle
|
29 |
+
# Define a function to load parsed data if available, or parse if not
|
30 |
+
def load_or_parse_data(loc):
|
31 |
+
data_file = parsed_data_file
|
32 |
+
|
33 |
+
if os.path.exists(data_file):
|
34 |
+
# Load the parsed data from the file
|
35 |
+
with open(data_file, "rb") as f:
|
36 |
+
parsed_data = pickle.load(f)
|
37 |
+
else:
|
38 |
+
# Perform the parsing step and store the result in llama_parse_documents
|
39 |
+
parsingInstructiontest10k = """The provided document can be a brochure , textbook ,guide.
|
40 |
+
It contains many images and tables.
|
41 |
+
Try to be precise while answering the questions"""
|
42 |
+
parser = LlamaParse(api_key=llamaparse_api_key, result_type="markdown", parsing_instruction=parsingInstructiontest10k)
|
43 |
+
llama_parse_documents = parser.load_data(loc)
|
44 |
+
|
45 |
+
|
46 |
+
# Save the parsed data to a file
|
47 |
+
with open(data_file, "wb") as f:
|
48 |
+
pickle.dump(llama_parse_documents, f)
|
49 |
+
|
50 |
+
# Set the parsed data to the variable
|
51 |
+
parsed_data = llama_parse_documents
|
52 |
+
|
53 |
+
return parsed_data
|
54 |
+
|
55 |
+
|
56 |
+
# Create vector database
|
57 |
+
def create_vector_database(loc):
|
58 |
+
"""
|
59 |
+
Creates a vector database using document loaders and embeddings.
|
60 |
+
This function loads urls,
|
61 |
+
splits the loaded documents into chunks, transforms them into embeddings using OllamaEmbeddings,
|
62 |
+
and finally persists the embeddings into a Chroma vector database.
|
63 |
+
"""
|
64 |
+
# Call the function to either load or parse the data
|
65 |
+
llama_parse_documents = load_or_parse_data(loc)
|
66 |
+
#print(llama_parse_documents[1].text[:100])
|
67 |
+
|
68 |
+
#with open('data/output.md', 'a') as f: # Open the file in append mode ('a')
|
69 |
+
# for doc in llama_parse_documents:
|
70 |
+
# f.write(doc.text + '\n')
|
71 |
+
with open(output_md, "a", encoding='utf-8') as f: # Open the file in append mode ('a')
|
72 |
+
for doc in llama_parse_documents:
|
73 |
+
f.write(doc.text + '\n')
|
74 |
+
|
75 |
+
loader = DirectoryLoader(loki, glob="**/*.md", show_progress=True)
|
76 |
+
documents = loader.load()
|
77 |
+
# Split loaded documents into chunks
|
78 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=100)
|
79 |
+
docs = text_splitter.split_documents(documents)
|
80 |
+
|
81 |
+
#len(docs)
|
82 |
+
#docs[0]
|
83 |
+
|
84 |
+
# Initialize Embeddings
|
85 |
+
embeddings = FastEmbedEmbeddings()
|
86 |
+
|
87 |
+
# Create and persist a Chroma vector database from the chunked documents
|
88 |
+
qdrant = Qdrant.from_documents(
|
89 |
+
documents=docs,
|
90 |
+
embedding=embeddings,
|
91 |
+
url=qdrant_url,
|
92 |
+
collection_name="rag",
|
93 |
+
api_key=qdrant_api_key
|
94 |
+
)
|
95 |
+
|
96 |
+
#query it
|
97 |
+
#query = "what is the agend of Financial Statements for 2022 ?"
|
98 |
+
#found_doc = qdrant.similarity_search(query, k=3)
|
99 |
+
#print(found_doc[0][:100])
|
100 |
+
|
101 |
+
print('Vector DB created successfully !')
|
102 |
+
|
103 |
+
|
104 |
+
if __name__ == "__main__":
|
105 |
+
create_vector_database()
|