Upload 3 files
Browse files
helper_functions/debug_helper_functions.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def debug_element(obj):
|
2 |
+
"""Get all attributes and their string representations from an object using dir()."""
|
3 |
+
import copy
|
4 |
+
try:
|
5 |
+
# Create a deep copy of the object if possible
|
6 |
+
obj_copy = copy.deepcopy(obj)
|
7 |
+
except:
|
8 |
+
try:
|
9 |
+
# If deepcopy fails, try shallow copy
|
10 |
+
obj_copy = copy.copy(obj)
|
11 |
+
except:
|
12 |
+
# If copying fails completely, use the original object
|
13 |
+
obj_copy = obj
|
14 |
+
|
15 |
+
attributes = dir(obj_copy)
|
16 |
+
results = []
|
17 |
+
|
18 |
+
for attr in attributes:
|
19 |
+
try:
|
20 |
+
# Get the attribute value from the copy
|
21 |
+
value = getattr(obj_copy, attr)
|
22 |
+
|
23 |
+
# Handle callable attributes
|
24 |
+
if callable(value):
|
25 |
+
try:
|
26 |
+
# Try to call the method without arguments
|
27 |
+
result = value()
|
28 |
+
str_value = f"<callable result: {str(result)}>"
|
29 |
+
except Exception as call_error:
|
30 |
+
# If calling fails, just record it's a callable
|
31 |
+
str_value = f"<callable: {type(value).__name__} - error when called: {str(call_error)}>"
|
32 |
+
else:
|
33 |
+
str_value = str(value)
|
34 |
+
|
35 |
+
results.append(f"{attr}: {str_value}")
|
36 |
+
except Exception as e:
|
37 |
+
results.append(f"{attr}: <error accessing: {str(e)}>")
|
38 |
+
|
39 |
+
return results
|
helper_functions/helper_functions.py
ADDED
@@ -0,0 +1,496 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ibm_watsonx_ai import APIClient, Credentials
|
2 |
+
from typing import Dict, Optional, List, Union, Any, Set
|
3 |
+
import pandas as pd
|
4 |
+
import marimo as mo
|
5 |
+
import json
|
6 |
+
import glob
|
7 |
+
import io
|
8 |
+
import os
|
9 |
+
|
10 |
+
def get_cred_value(key, creds_var_name="baked_in_creds", default=""):
|
11 |
+
"""
|
12 |
+
Helper function to safely get a value from a credentials dictionary.
|
13 |
+
|
14 |
+
Searches for credentials in:
|
15 |
+
1. Global variables with the specified variable name
|
16 |
+
2. Imported modules containing the specified variable name
|
17 |
+
|
18 |
+
Args:
|
19 |
+
key: The key to look up in the credentials dictionary.
|
20 |
+
creds_var_name: The variable name of the credentials dictionary.
|
21 |
+
default: The default value to return if the key is not found.
|
22 |
+
Returns:
|
23 |
+
The value from the credentials dictionary if it exists and contains the key,
|
24 |
+
otherwise returns the default value.
|
25 |
+
"""
|
26 |
+
# Check if the credentials variable exists in globals
|
27 |
+
if creds_var_name in globals():
|
28 |
+
creds_dict = globals()[creds_var_name]
|
29 |
+
if isinstance(creds_dict, dict) and key in creds_dict:
|
30 |
+
return creds_dict[key]
|
31 |
+
|
32 |
+
# Check if credentials are in an imported module
|
33 |
+
import sys
|
34 |
+
for module_name, module_obj in sys.modules.items():
|
35 |
+
if hasattr(module_obj, creds_var_name):
|
36 |
+
creds_dict = getattr(module_obj, creds_var_name)
|
37 |
+
if isinstance(creds_dict, dict) and key in creds_dict:
|
38 |
+
return creds_dict[key]
|
39 |
+
|
40 |
+
return default
|
41 |
+
|
42 |
+
def get_key_by_value(dictionary, value):
|
43 |
+
for key, val in dictionary.items():
|
44 |
+
if val == value:
|
45 |
+
return key
|
46 |
+
return None
|
47 |
+
|
48 |
+
def markdown_spacing(number):
|
49 |
+
"""Convert a number to that many ' ' characters."""
|
50 |
+
return ' ' * number
|
51 |
+
|
52 |
+
def wrap_with_spaces(text_to_wrap, prefix_spaces=2, suffix_spaces=2):
|
53 |
+
"""Wrap text with non-breaking spaces on either side."""
|
54 |
+
prefix = markdown_spacing(prefix_spaces) if prefix_spaces > 0 else ""
|
55 |
+
suffix = markdown_spacing(suffix_spaces) if suffix_spaces > 0 else ""
|
56 |
+
return f"{prefix}{text_to_wrap}{suffix}"
|
57 |
+
|
58 |
+
|
59 |
+
def load_file_dataframe(file, file_extension, sheet_selector=None, excel_data=None, header_row=0):
|
60 |
+
"""
|
61 |
+
Load a dataframe from an uploaded file with customizable header and row skipping.
|
62 |
+
|
63 |
+
Parameters:
|
64 |
+
-----------
|
65 |
+
file : marimo.ui.file object
|
66 |
+
The file upload component containing the file data
|
67 |
+
file_extension : str
|
68 |
+
The extension of the uploaded file (.xlsx, .xls, .csv, .json)
|
69 |
+
sheet_selector : marimo.ui.dropdown, optional
|
70 |
+
Dropdown component for selecting Excel sheets
|
71 |
+
excel_data : BytesIO, optional
|
72 |
+
BytesIO object containing Excel data
|
73 |
+
header_row : int, optional
|
74 |
+
Row index to use as column headers (0-based). Default is 0 (first row).
|
75 |
+
Use None to have pandas generate default column names.
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
--------
|
79 |
+
tuple
|
80 |
+
(pandas.DataFrame, list) - The loaded dataframe and list of column names
|
81 |
+
"""
|
82 |
+
|
83 |
+
dataframe = pd.DataFrame([])
|
84 |
+
column_names = []
|
85 |
+
|
86 |
+
if file.contents():
|
87 |
+
# Handle different file types
|
88 |
+
if file_extension in ['.xlsx', '.xls'] and sheet_selector is not None and sheet_selector.value:
|
89 |
+
# For Excel files - now we can safely access sheet_selector.value
|
90 |
+
excel_data.seek(0) # Reset buffer position
|
91 |
+
dataframe = pd.read_excel(
|
92 |
+
excel_data,
|
93 |
+
sheet_name=sheet_selector.value,
|
94 |
+
header=header_row,
|
95 |
+
engine="openpyxl" if file_extension == '.xlsx' else "xlrd"
|
96 |
+
)
|
97 |
+
column_names = list(dataframe.columns)
|
98 |
+
elif file_extension == '.csv':
|
99 |
+
# For CSV files
|
100 |
+
csv_data = io.StringIO(file.contents().decode('utf-8'))
|
101 |
+
dataframe = pd.read_csv(csv_data, header=header_row)
|
102 |
+
column_names = list(dataframe.columns)
|
103 |
+
elif file_extension == '.json':
|
104 |
+
# For JSON files
|
105 |
+
try:
|
106 |
+
json_data = json.loads(file.contents().decode('utf-8'))
|
107 |
+
# Handle different JSON structures
|
108 |
+
if isinstance(json_data, list):
|
109 |
+
dataframe = pd.DataFrame(json_data)
|
110 |
+
elif isinstance(json_data, dict):
|
111 |
+
# If it's a dictionary with nested structures, try to normalize it
|
112 |
+
if any(isinstance(v, (dict, list)) for v in json_data.values()):
|
113 |
+
# For nested JSON with consistent structure
|
114 |
+
dataframe = pd.json_normalize(json_data)
|
115 |
+
else:
|
116 |
+
# For flat JSON
|
117 |
+
dataframe = pd.DataFrame([json_data])
|
118 |
+
column_names = list(dataframe.columns)
|
119 |
+
except Exception as e:
|
120 |
+
print(f"Error parsing JSON: {e}")
|
121 |
+
|
122 |
+
return dataframe, column_names
|
123 |
+
|
124 |
+
|
125 |
+
def create_parameter_table(input_list, column_name="Active Options", label="Select the Parameters to set to Active",
|
126 |
+
selection_type="multi-cell", text_justify="center"):
|
127 |
+
"""
|
128 |
+
Creates a marimo table for parameter selection.
|
129 |
+
|
130 |
+
Args:
|
131 |
+
input_list: List of parameter names to display in the table
|
132 |
+
column_name: Name of the column (default: "Active Options")
|
133 |
+
label: Label for the table (default: "Select the Parameters to set to Active:")
|
134 |
+
selection_type: Selection type, either "single-cell" or "multi-cell" (default: "multi-cell")
|
135 |
+
text_justify: Text justification for the column (default: "center")
|
136 |
+
|
137 |
+
Returns:
|
138 |
+
A marimo table configured for parameter selection
|
139 |
+
"""
|
140 |
+
import marimo as mo
|
141 |
+
|
142 |
+
# Validate selection type
|
143 |
+
if selection_type not in ["single-cell", "multi-cell"]:
|
144 |
+
raise ValueError("selection_type must be either 'single-cell' or 'multi-cell'")
|
145 |
+
|
146 |
+
# Validate text justification
|
147 |
+
if text_justify not in ["left", "center", "right"]:
|
148 |
+
raise ValueError("text_justify must be one of: 'left', 'center', 'right'")
|
149 |
+
|
150 |
+
# Create the table
|
151 |
+
parameter_table = mo.ui.table(
|
152 |
+
label=f"**{label}**",
|
153 |
+
data={column_name: input_list},
|
154 |
+
selection=selection_type,
|
155 |
+
text_justify_columns={column_name: text_justify}
|
156 |
+
)
|
157 |
+
|
158 |
+
return parameter_table
|
159 |
+
|
160 |
+
def get_cell_values(parameter_options):
|
161 |
+
"""
|
162 |
+
Extract active parameter values from a mo.ui.table.
|
163 |
+
|
164 |
+
Args:
|
165 |
+
parameter_options: A mo.ui.table with cell selection enabled
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
Dictionary mapping parameter names to boolean values (True/False)
|
169 |
+
"""
|
170 |
+
# Get all parameter names from the table data
|
171 |
+
all_params = set()
|
172 |
+
|
173 |
+
# Use the data property to get all options from the table
|
174 |
+
if hasattr(parameter_options, 'data'):
|
175 |
+
table_data = parameter_options.data
|
176 |
+
|
177 |
+
# Handle DataFrame-like structure
|
178 |
+
if hasattr(table_data, 'shape') and hasattr(table_data, 'iloc'):
|
179 |
+
for i in range(table_data.shape[0]):
|
180 |
+
# Get value from first column
|
181 |
+
if table_data.shape[1] > 0:
|
182 |
+
param = table_data.iloc[i, 0]
|
183 |
+
if param and isinstance(param, str):
|
184 |
+
all_params.add(param)
|
185 |
+
|
186 |
+
# Handle dict structure (common in marimo tables)
|
187 |
+
elif isinstance(table_data, dict):
|
188 |
+
# Get the first column's values
|
189 |
+
if len(table_data) > 0:
|
190 |
+
col_name = next(iter(table_data))
|
191 |
+
for param in table_data[col_name]:
|
192 |
+
if param and isinstance(param, str):
|
193 |
+
all_params.add(param)
|
194 |
+
|
195 |
+
# Create result dictionary with all parameters set to False by default
|
196 |
+
result = {param: False for param in all_params}
|
197 |
+
|
198 |
+
# Get the selected cells
|
199 |
+
if hasattr(parameter_options, 'value') and parameter_options.value is not None:
|
200 |
+
selected_cells = parameter_options.value
|
201 |
+
|
202 |
+
# Process selected cells
|
203 |
+
for cell in selected_cells:
|
204 |
+
if hasattr(cell, 'value') and cell.value in result:
|
205 |
+
result[cell.value] = True
|
206 |
+
elif isinstance(cell, dict) and 'value' in cell and cell['value'] in result:
|
207 |
+
result[cell['value']] = True
|
208 |
+
elif isinstance(cell, str) and cell in result:
|
209 |
+
result[cell] = True
|
210 |
+
|
211 |
+
return result
|
212 |
+
|
213 |
+
def convert_table_to_json_docs(df, selected_columns=None):
|
214 |
+
"""
|
215 |
+
Convert a pandas DataFrame or dictionary to a list of JSON documents.
|
216 |
+
Dynamically includes columns based on user selection.
|
217 |
+
Column names are standardized to lowercase with underscores instead of spaces
|
218 |
+
and special characters removed.
|
219 |
+
|
220 |
+
Args:
|
221 |
+
df: The DataFrame or dictionary to process
|
222 |
+
selected_columns: List of column names to include in the output documents
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
list: A list of dictionaries, each representing a row as a JSON document
|
226 |
+
"""
|
227 |
+
import pandas as pd
|
228 |
+
import re
|
229 |
+
|
230 |
+
def standardize_key(key):
|
231 |
+
"""Convert a column name to lowercase with underscores instead of spaces and no special characters"""
|
232 |
+
if not isinstance(key, str):
|
233 |
+
return str(key).lower()
|
234 |
+
# Replace spaces with underscores and convert to lowercase
|
235 |
+
key = key.lower().replace(' ', '_')
|
236 |
+
# Remove special characters (keeping alphanumeric and underscores)
|
237 |
+
return re.sub(r'[^\w]', '', key)
|
238 |
+
|
239 |
+
# Handle case when input is a dictionary
|
240 |
+
if isinstance(df, dict):
|
241 |
+
# Filter the dictionary to include only selected columns
|
242 |
+
if selected_columns:
|
243 |
+
return [{standardize_key(k): df.get(k, None) for k in selected_columns}]
|
244 |
+
else:
|
245 |
+
# If no columns selected, return all key-value pairs with standardized keys
|
246 |
+
return [{standardize_key(k): v for k, v in df.items()}]
|
247 |
+
|
248 |
+
# Handle case when df is None
|
249 |
+
if df is None:
|
250 |
+
return []
|
251 |
+
|
252 |
+
# Ensure df is a DataFrame
|
253 |
+
if not isinstance(df, pd.DataFrame):
|
254 |
+
try:
|
255 |
+
df = pd.DataFrame(df)
|
256 |
+
except:
|
257 |
+
return [] # Return empty list if conversion fails
|
258 |
+
|
259 |
+
# Now check if DataFrame is empty
|
260 |
+
if df.empty:
|
261 |
+
return []
|
262 |
+
|
263 |
+
# Process selected_columns if it's a dictionary of true/false values
|
264 |
+
if isinstance(selected_columns, dict):
|
265 |
+
# Extract keys where value is True
|
266 |
+
selected_columns = [col for col, include in selected_columns.items() if include]
|
267 |
+
|
268 |
+
# If no columns are specifically selected, use all available columns
|
269 |
+
if not selected_columns or not isinstance(selected_columns, list) or len(selected_columns) == 0:
|
270 |
+
selected_columns = list(df.columns)
|
271 |
+
|
272 |
+
# Determine which columns exist in the DataFrame
|
273 |
+
available_columns = []
|
274 |
+
columns_lower = {col.lower(): col for col in df.columns if isinstance(col, str)}
|
275 |
+
|
276 |
+
for col in selected_columns:
|
277 |
+
if col in df.columns:
|
278 |
+
available_columns.append(col)
|
279 |
+
elif isinstance(col, str) and col.lower() in columns_lower:
|
280 |
+
available_columns.append(columns_lower[col.lower()])
|
281 |
+
|
282 |
+
# If no valid columns found, return empty list
|
283 |
+
if not available_columns:
|
284 |
+
return []
|
285 |
+
|
286 |
+
# Process rows
|
287 |
+
json_docs = []
|
288 |
+
for _, row in df.iterrows():
|
289 |
+
doc = {}
|
290 |
+
for col in available_columns:
|
291 |
+
value = row[col]
|
292 |
+
# Standardize the column name when adding to document
|
293 |
+
std_col = standardize_key(col)
|
294 |
+
doc[std_col] = None if pd.isna(value) else value
|
295 |
+
json_docs.append(doc)
|
296 |
+
|
297 |
+
return json_docs
|
298 |
+
|
299 |
+
def filter_models_by_function(resources, function_type="prompt_chat"):
|
300 |
+
"""
|
301 |
+
Filter model IDs from resources list that have a specific function type
|
302 |
+
|
303 |
+
Args:
|
304 |
+
resources (list): List of model resource objects
|
305 |
+
function_type (str, optional): Function type to filter by. Defaults to "prompt_chat".
|
306 |
+
|
307 |
+
Returns:
|
308 |
+
list: List of model IDs that have the specified function
|
309 |
+
"""
|
310 |
+
filtered_model_ids = []
|
311 |
+
|
312 |
+
if not resources or not isinstance(resources, list):
|
313 |
+
return filtered_model_ids
|
314 |
+
|
315 |
+
for model in resources:
|
316 |
+
# Check if the model has a functions attribute
|
317 |
+
if "functions" in model and isinstance(model["functions"], list):
|
318 |
+
# Check if any function has the matching id
|
319 |
+
has_function = any(
|
320 |
+
func.get("id") == function_type
|
321 |
+
for func in model["functions"]
|
322 |
+
if isinstance(func, dict)
|
323 |
+
)
|
324 |
+
|
325 |
+
if has_function and "model_id" in model:
|
326 |
+
filtered_model_ids.append(model["model_id"])
|
327 |
+
|
328 |
+
return filtered_model_ids
|
329 |
+
|
330 |
+
|
331 |
+
def get_model_selection_table(client=None, model_type="all", filter_functionality=None, selection_mode="single-cell"):
|
332 |
+
"""
|
333 |
+
Creates and displays a table for model selection based on specified parameters.
|
334 |
+
|
335 |
+
Args:
|
336 |
+
client: The client object for API calls. If None, returns default models.
|
337 |
+
model_type (str): Type of models to display. Options: "all", "chat", "embedding".
|
338 |
+
filter_functionality (str, optional): Filter models by functionality type.
|
339 |
+
Options include: "image_chat", "text_chat", "autoai_rag",
|
340 |
+
"text_generation", "multilingual", etc.
|
341 |
+
selection_mode (str): Mode for selecting table entries. Options: "single", "single-cell".
|
342 |
+
Defaults to "single-cell".
|
343 |
+
|
344 |
+
Returns:
|
345 |
+
The selected model ID from the displayed table.
|
346 |
+
"""
|
347 |
+
# Default model list if client is None
|
348 |
+
default_models = ['mistralai/mistral-large']
|
349 |
+
|
350 |
+
if client is None:
|
351 |
+
# If no client, use default models
|
352 |
+
available_models = default_models
|
353 |
+
selection = mo.ui.table(
|
354 |
+
available_models,
|
355 |
+
selection="single",
|
356 |
+
label="Select a model to use.",
|
357 |
+
page_size=30,
|
358 |
+
)
|
359 |
+
return selection
|
360 |
+
|
361 |
+
# Get appropriate model specs based on model_type
|
362 |
+
if model_type == "chat":
|
363 |
+
model_specs = client.foundation_models.get_chat_model_specs()
|
364 |
+
elif model_type == "embedding":
|
365 |
+
model_specs = client.foundation_models.get_embeddings_model_specs()
|
366 |
+
else:
|
367 |
+
model_specs = client.foundation_models.get_model_specs()
|
368 |
+
|
369 |
+
# Extract resources from model specs
|
370 |
+
resources = model_specs.get("resources", [])
|
371 |
+
|
372 |
+
# Filter by functionality if specified
|
373 |
+
if filter_functionality and resources:
|
374 |
+
model_id_list = filter_models_by_function(resources, filter_functionality)
|
375 |
+
else:
|
376 |
+
# Create list of model IDs if no filtering
|
377 |
+
model_id_list = [resource["model_id"] for resource in resources]
|
378 |
+
|
379 |
+
# If no models available after filtering, use defaults
|
380 |
+
if not model_id_list:
|
381 |
+
model_id_list = default_models
|
382 |
+
|
383 |
+
# Create and display selection table
|
384 |
+
model_selector = mo.ui.table(
|
385 |
+
model_id_list,
|
386 |
+
selection=selection_mode,
|
387 |
+
label="Select a model to use.",
|
388 |
+
page_size=30,
|
389 |
+
initial_selection = [("0", "value")] if selection_mode == "single-cell" else [0]
|
390 |
+
### For single-cell it must have [("<row_nr as a string>","column_name string")] to work as initial value
|
391 |
+
)
|
392 |
+
|
393 |
+
return model_selector, resources, model_id_list
|
394 |
+
|
395 |
+
def _enforce_model_selection(model_selection, model_id_list):
|
396 |
+
# If nothing is selected (empty list) or value is None
|
397 |
+
if not model_selection.value:
|
398 |
+
# Reset to first item
|
399 |
+
model = 0
|
400 |
+
model_selection._value = model_id_list[model]
|
401 |
+
print(model_selection.value)
|
402 |
+
return model_selection.value
|
403 |
+
|
404 |
+
def update_max_tokens_limit(model_selection, resources, model_id_list):
|
405 |
+
# Default value
|
406 |
+
default_max_tokens = 4096
|
407 |
+
|
408 |
+
try:
|
409 |
+
# Check if we have a selection and resources
|
410 |
+
if model_selection.value is None or not hasattr(model_selection, 'value'):
|
411 |
+
print("No model selection or selection has no value")
|
412 |
+
return default_max_tokens
|
413 |
+
|
414 |
+
if not resources or not isinstance(resources, list) or len(resources) == 0:
|
415 |
+
print("Resources is empty or not a list")
|
416 |
+
return default_max_tokens
|
417 |
+
|
418 |
+
# Get the model ID - handle both index selection and direct string selection
|
419 |
+
selected_value = model_selection.value
|
420 |
+
print(f"Raw selection value: {selected_value}")
|
421 |
+
|
422 |
+
# If it's an array with indices
|
423 |
+
if isinstance(selected_value, list) and len(selected_value) > 0:
|
424 |
+
if isinstance(selected_value[0], int) and 0 <= selected_value[0] < len(model_id_list):
|
425 |
+
selected_model_id = model_id_list[selected_value[0]]
|
426 |
+
else:
|
427 |
+
selected_model_id = str(selected_value[0]) # Convert to string if needed
|
428 |
+
else:
|
429 |
+
selected_model_id = str(selected_value) # Direct value
|
430 |
+
|
431 |
+
print(f"Selected model ID: {selected_model_id}")
|
432 |
+
|
433 |
+
# Find the model
|
434 |
+
for model in resources:
|
435 |
+
model_id = model.get("model_id")
|
436 |
+
if model_id == selected_model_id:
|
437 |
+
if "model_limits" in model and "max_output_tokens" in model["model_limits"]:
|
438 |
+
return model["model_limits"]["max_output_tokens"]
|
439 |
+
break
|
440 |
+
|
441 |
+
except Exception as e:
|
442 |
+
print(f"Error: {e}")
|
443 |
+
|
444 |
+
return default_max_tokens
|
445 |
+
|
446 |
+
|
447 |
+
def load_templates(
|
448 |
+
folder_path: str,
|
449 |
+
file_extensions: Optional[List[str]] = None,
|
450 |
+
strip_whitespace: bool = True
|
451 |
+
) -> Dict[str, str]:
|
452 |
+
"""
|
453 |
+
Load template files from a specified folder into a dictionary.
|
454 |
+
|
455 |
+
Args:
|
456 |
+
folder_path: Path to the folder containing template files
|
457 |
+
file_extensions: List of file extensions to include (default: ['.txt', '.md'])
|
458 |
+
strip_whitespace: Whether to strip leading/trailing whitespace from templates (default: True)
|
459 |
+
|
460 |
+
Returns:
|
461 |
+
Dictionary with filename (without extension) as key and file content as value
|
462 |
+
"""
|
463 |
+
# Default extensions if none provided
|
464 |
+
if file_extensions is None:
|
465 |
+
file_extensions = ['.txt', '.md']
|
466 |
+
|
467 |
+
# Ensure extensions start with a dot
|
468 |
+
file_extensions = [ext if ext.startswith('.') else f'.{ext}' for ext in file_extensions]
|
469 |
+
|
470 |
+
templates = {"empty": " "} # Default empty template
|
471 |
+
|
472 |
+
# Create glob patterns for each extension
|
473 |
+
patterns = [os.path.join(folder_path, f'*{ext}') for ext in file_extensions]
|
474 |
+
|
475 |
+
# Find all matching files
|
476 |
+
for pattern in patterns:
|
477 |
+
for file_path in glob.glob(pattern):
|
478 |
+
try:
|
479 |
+
# Extract filename without extension to use as key
|
480 |
+
filename = os.path.basename(file_path)
|
481 |
+
template_name = os.path.splitext(filename)[0]
|
482 |
+
|
483 |
+
# Read file content
|
484 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
485 |
+
content = file.read()
|
486 |
+
|
487 |
+
# Strip whitespace if specified
|
488 |
+
if strip_whitespace:
|
489 |
+
content = content.strip()
|
490 |
+
|
491 |
+
templates[template_name] = content
|
492 |
+
|
493 |
+
except Exception as e:
|
494 |
+
print(f"Error loading template from {file_path}: {str(e)}")
|
495 |
+
|
496 |
+
return templates
|
helper_functions/table_helper_functions.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
def process_with_llm(fields_to_process, prompt_template, inf_model, params, batch_size=10):
|
3 |
+
"""
|
4 |
+
Process documents with LLM using a prompt template with dynamic field mapping.
|
5 |
+
Uses template fields to extract values from pre-standardized document fields.
|
6 |
+
|
7 |
+
Args:
|
8 |
+
fields_to_process (list): List of document dictionaries to process
|
9 |
+
prompt_template (str): Template with {field_name} placeholders matching keys in documents
|
10 |
+
inf_model: The inference model instance to use for generation
|
11 |
+
params: Parameters to pass to the inference model
|
12 |
+
batch_size (int): Number of documents to process per batch
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
list: Processed results from the LLM
|
16 |
+
"""
|
17 |
+
import time
|
18 |
+
import re
|
19 |
+
|
20 |
+
# Safety check for inputs
|
21 |
+
if not fields_to_process or not inf_model:
|
22 |
+
print("Missing required inputs")
|
23 |
+
return []
|
24 |
+
|
25 |
+
# Handle case where prompt_template is a dictionary (from UI components)
|
26 |
+
if isinstance(prompt_template, dict) and 'value' in prompt_template:
|
27 |
+
prompt_template = prompt_template['value']
|
28 |
+
elif not isinstance(prompt_template, str):
|
29 |
+
print(f"Invalid prompt template type: {type(prompt_template)}, expected string")
|
30 |
+
return []
|
31 |
+
|
32 |
+
# Extract field names from the prompt template using regex
|
33 |
+
# This finds all strings between curly braces
|
34 |
+
field_pattern = r'\{([^{}]+)\}'
|
35 |
+
template_fields = re.findall(field_pattern, prompt_template)
|
36 |
+
|
37 |
+
if not template_fields:
|
38 |
+
print("No field placeholders found in template")
|
39 |
+
return []
|
40 |
+
|
41 |
+
# Create formatted prompts from the documents
|
42 |
+
formatted_prompts = []
|
43 |
+
for doc in fields_to_process:
|
44 |
+
try:
|
45 |
+
# Create a dictionary of field values to substitute
|
46 |
+
field_values = {}
|
47 |
+
|
48 |
+
for field in template_fields:
|
49 |
+
# Try direct match first
|
50 |
+
if field in doc:
|
51 |
+
field_values[field] = doc[field] if doc[field] is not None else ""
|
52 |
+
# If field contains periods (e.g., "data.title"), evaluate it
|
53 |
+
elif '.' in field:
|
54 |
+
try:
|
55 |
+
# Build a safe evaluation string
|
56 |
+
parts = field.split('.')
|
57 |
+
value = doc
|
58 |
+
for part in parts:
|
59 |
+
if isinstance(value, dict) and part in value:
|
60 |
+
value = value[part]
|
61 |
+
else:
|
62 |
+
value = None
|
63 |
+
break
|
64 |
+
field_values[field] = value if value is not None else ""
|
65 |
+
except:
|
66 |
+
field_values[field] = ""
|
67 |
+
else:
|
68 |
+
# Default to empty string if field not found
|
69 |
+
field_values[field] = ""
|
70 |
+
|
71 |
+
# Handle None values at the top level to ensure formatting works
|
72 |
+
for key in field_values:
|
73 |
+
if field_values[key] is None:
|
74 |
+
field_values[key] = ""
|
75 |
+
|
76 |
+
# Format the prompt with all available fields
|
77 |
+
prompt = prompt_template.format(**field_values)
|
78 |
+
formatted_prompts.append(prompt)
|
79 |
+
|
80 |
+
except Exception as e:
|
81 |
+
print(f"Error formatting prompt: {str(e)}")
|
82 |
+
print(f"Field values: {field_values}")
|
83 |
+
continue
|
84 |
+
|
85 |
+
# Return empty list if no valid prompts
|
86 |
+
if not formatted_prompts:
|
87 |
+
print("No valid prompts generated")
|
88 |
+
return []
|
89 |
+
|
90 |
+
# Print a sample of the formatted prompts for debugging
|
91 |
+
if formatted_prompts:
|
92 |
+
print(f"Sample formatted prompt: {formatted_prompts[0][:200]}...")
|
93 |
+
|
94 |
+
# Split into batches
|
95 |
+
batches = [formatted_prompts[i:i + batch_size] for i in range(0, len(formatted_prompts), batch_size)]
|
96 |
+
|
97 |
+
results = []
|
98 |
+
|
99 |
+
# Process each batch
|
100 |
+
for i, batch in enumerate(batches):
|
101 |
+
start_time = time.time()
|
102 |
+
|
103 |
+
try:
|
104 |
+
# Use the provided inference model to generate responses
|
105 |
+
print(f"Sending batch {i+1} of {len(batches)} to model")
|
106 |
+
|
107 |
+
# Call the inference model with the batch of prompts and params
|
108 |
+
batch_results = inf_model.generate_text(prompt=batch, params=params)
|
109 |
+
|
110 |
+
results.extend(batch_results)
|
111 |
+
|
112 |
+
except Exception as e:
|
113 |
+
print(f"Error in batch {i+1}: {str(e)}")
|
114 |
+
continue
|
115 |
+
|
116 |
+
end_time = time.time()
|
117 |
+
inference_time = end_time - start_time
|
118 |
+
print(f"Inference time for Batch {i+1}: {inference_time:.2f} seconds")
|
119 |
+
|
120 |
+
return results
|
121 |
+
|
122 |
+
def append_llm_results_to_dataframe(target_dataframe, fields_to_process, llm_results, selection_table, column_name=None):
|
123 |
+
"""
|
124 |
+
Add LLM processing results directly to the target DataFrame using selection indices
|
125 |
+
|
126 |
+
Args:
|
127 |
+
target_dataframe (pandas.DataFrame): DataFrame to modify in-place
|
128 |
+
fields_to_process (list): List of document dictionaries that were processed
|
129 |
+
llm_results (list): Results from the process_with_llm function
|
130 |
+
selection_table: Table selection containing indices of rows to update
|
131 |
+
column_name (str, optional): Custom name for the new column
|
132 |
+
"""
|
133 |
+
column_name = column_name or f"Added Column {len(list(target_dataframe))}"
|
134 |
+
|
135 |
+
# Initialize the new column with empty strings if it doesn't exist
|
136 |
+
if column_name not in target_dataframe.columns:
|
137 |
+
target_dataframe[column_name] = ""
|
138 |
+
|
139 |
+
# Safety checks
|
140 |
+
if not isinstance(llm_results, list) or not llm_results:
|
141 |
+
print("No LLM results to add")
|
142 |
+
return
|
143 |
+
|
144 |
+
# Get indices from selection table
|
145 |
+
if selection_table is not None and not selection_table.empty:
|
146 |
+
selected_indices = selection_table.index.tolist()
|
147 |
+
|
148 |
+
# Make sure we have the right number of results for the selected rows
|
149 |
+
if len(selected_indices) != len(llm_results):
|
150 |
+
print(f"Warning: Number of results ({len(llm_results)}) doesn't match selected rows ({len(selected_indices)})")
|
151 |
+
|
152 |
+
# Add results to the DataFrame at the selected indices
|
153 |
+
for idx, result in zip(selected_indices, llm_results):
|
154 |
+
try:
|
155 |
+
if idx < len(target_dataframe):
|
156 |
+
target_dataframe.at[idx, column_name] = result
|
157 |
+
else:
|
158 |
+
print(f"Warning: Selected index {idx} exceeds DataFrame length")
|
159 |
+
except Exception as e:
|
160 |
+
print(f"Error adding result to DataFrame: {str(e)}")
|
161 |
+
else:
|
162 |
+
print("No selection table provided or empty selection")
|
163 |
+
|
164 |
+
def add_llm_results_to_dataframe(original_df, fields_to_process, llm_results, column_name=None):
|
165 |
+
"""
|
166 |
+
Add LLM processing results to a copy of the original DataFrame
|
167 |
+
|
168 |
+
Args:
|
169 |
+
original_df (pandas.DataFrame): Original DataFrame
|
170 |
+
fields_to_process (list): List of document dictionaries that were processed
|
171 |
+
llm_results (list): Results from the process_with_llm function
|
172 |
+
|
173 |
+
Returns:
|
174 |
+
pandas.DataFrame: Copy of original DataFrame with added "Added Column {len(list(original_df))}" column or a custom name
|
175 |
+
"""
|
176 |
+
import pandas as pd
|
177 |
+
|
178 |
+
column_name = column_name or f"Added Column {len(list(original_df))}"
|
179 |
+
|
180 |
+
# Create a copy of the original DataFrame
|
181 |
+
result_df = original_df.copy()
|
182 |
+
|
183 |
+
# Initialize the new column with empty strings
|
184 |
+
result_df[column_name] = ""
|
185 |
+
|
186 |
+
# Safety checks
|
187 |
+
if not isinstance(llm_results, list) or not llm_results:
|
188 |
+
print("No LLM results to add")
|
189 |
+
return result_df
|
190 |
+
|
191 |
+
# Add results to the DataFrame
|
192 |
+
for i, (doc, result) in enumerate(zip(fields_to_process, llm_results)):
|
193 |
+
try:
|
194 |
+
# Find the matching row in the DataFrame
|
195 |
+
# This assumes the order of fields_to_process matches the original DataFrame
|
196 |
+
if i < len(result_df):
|
197 |
+
result_df.at[i, column_name] = result
|
198 |
+
else:
|
199 |
+
print(f"Warning: Result index {i} exceeds DataFrame length")
|
200 |
+
except Exception as e:
|
201 |
+
print(f"Error adding result to DataFrame: {str(e)}")
|
202 |
+
continue
|
203 |
+
|
204 |
+
return result_df
|
205 |
+
|
206 |
+
|
207 |
+
def display_answers_as_markdown(answers, mo):
|
208 |
+
"""
|
209 |
+
Takes a list of answers and displays each one as markdown using mo.md()
|
210 |
+
|
211 |
+
Args:
|
212 |
+
answers (list): List of text answers from the LLM
|
213 |
+
mo: The existing marimo module from the environment
|
214 |
+
|
215 |
+
Returns:
|
216 |
+
list: List of markdown elements
|
217 |
+
"""
|
218 |
+
# Handle case where answers is None or empty
|
219 |
+
if not answers:
|
220 |
+
return [mo.md("No answers available")]
|
221 |
+
|
222 |
+
# Create markdown for each answer
|
223 |
+
markdown_elements = []
|
224 |
+
for i, answer in enumerate(answers):
|
225 |
+
# Create a formatted markdown element with answer number and content
|
226 |
+
md_element = mo.md(f"""\n\n---\n\n# Answer {i+1}\n\n{answer}""")
|
227 |
+
markdown_elements.append(md_element)
|
228 |
+
|
229 |
+
return markdown_elements
|
230 |
+
|
231 |
+
def display_answers_stacked(answers, mo):
|
232 |
+
"""
|
233 |
+
Takes a list of answers and displays them stacked vertically using mo.vstack()
|
234 |
+
|
235 |
+
Args:
|
236 |
+
answers (list): List of text answers from the LLM
|
237 |
+
mo: The existing marimo module from the environment
|
238 |
+
|
239 |
+
Returns:
|
240 |
+
element: A vertically stacked collection of markdown elements
|
241 |
+
"""
|
242 |
+
# Get individual markdown elements
|
243 |
+
md_elements = display_answers_as_markdown(answers, mo)
|
244 |
+
|
245 |
+
# Add separator between each answer
|
246 |
+
separator = mo.md("---")
|
247 |
+
elements_with_separators = []
|
248 |
+
|
249 |
+
for i, elem in enumerate(md_elements):
|
250 |
+
elements_with_separators.append(elem)
|
251 |
+
if i < len(md_elements) - 1: # Don't add separator after the last element
|
252 |
+
elements_with_separators.append(separator)
|
253 |
+
|
254 |
+
# Return a vertically stacked collection
|
255 |
+
return mo.vstack(elements_with_separators, align="start", gap="2")
|