File size: 8,994 Bytes
1602ff5 696e220 1602ff5 696e220 1602ff5 696e220 1602ff5 696e220 1602ff5 696e220 1602ff5 696e220 1602ff5 696e220 1602ff5 696e220 1602ff5 696e220 1602ff5 696e220 1602ff5 696e220 1602ff5 696e220 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
def stream_file_to_cos():
# Import dependencies
import ibm_boto3
import requests
from ibm_botocore.client import Config
import json
import os
import re
from urllib.parse import unquote
def extract_filename_from_headers(response):
"""
Extract the actual filename from response headers.
Checks Content-Disposition and falls back to other methods if needed.
Uses mimetypes library for extension mapping.
"""
import mimetypes
# Ensure mimetypes database is initialized with common types
mimetypes.init()
# Add any missing but common MIME types that might not be in the default database
if not mimetypes.guess_extension('application/x-jsonlines'):
mimetypes.add_type('application/x-jsonlines', '.jsonl')
if not mimetypes.guess_extension('application/parquet'):
mimetypes.add_type('application/parquet', '.parquet')
if not mimetypes.guess_extension('application/x-ipynb+json'):
mimetypes.add_type('application/x-ipynb+json', '.ipynb')
if not mimetypes.guess_extension('application/yaml'):
mimetypes.add_type('application/yaml', '.yaml')
if not mimetypes.guess_extension('text/yaml'):
mimetypes.add_type('text/yaml', '.yaml')
if not mimetypes.guess_extension('application/toml'):
mimetypes.add_type('application/toml', '.toml')
# Try Content-Disposition header first
content_disposition = response.headers.get('Content-Disposition')
if content_disposition:
# Look for filename= or filename*= parameters
matches = re.findall(r'filename\*?=(?:([^\']*\'\')?([^;\n]*))', content_disposition)
if matches:
# Take the last match and handle encoded filenames
encoding, filename = matches[-1]
if encoding:
filename = unquote(filename)
return filename.strip('"\'')
# Get the URL path as fallback filename
url_path = response.url.split('/')[-1].split('?')[0]
# Try Content-Type for file extension
content_type = response.headers.get('Content-Type', '').split(';')[0]
if content_type and '.' not in url_path:
# Get extension from mimetype
extension = mimetypes.guess_extension(content_type)
if extension:
return f"{url_path}{extension}"
# Fallback to URL filename
return url_path
def score(payload): ### or def score(payload, token=None) if you want to add authentication
"""
WatsonX.ai deployable function to stream files from HTTP to Cloud Object Storage
Expected simplified format:
[
{
"cos_config": {
"bucket_name": "my-bucket",
"api_key": "my-api-key",
"instance_id": "my-instance-id",
"auth_endpoint": "https://iam.cloud.ibm.com/identity/token",
"endpoint_url": "https://s3.us-south.cloud-object-storage.appdomain.cloud"
},
"source_urls": ["https://example.com/file1.pdf", "https://example.com/file2.csv"],
"prefix": "my/prefix",
"http_method": "GET"
}
]
Which you can run through this kind of helper function:
### --- --- ---
def reformat_for_wxai_scoring(input_data):
'''Converts input data to WatsonX.ai scoring payload format.'''
# Convert single dict to list
inputs = [input_data] if isinstance(input_data, dict) else input_data
if not inputs:
return {"input_data": [{"fields": [], "values": [[]]}]}
# Extract fields from first object
fields = list(inputs[0].keys())
# Build values array
values = [[obj.get(field, None) for field in fields] for obj in inputs]
return {"input_data": [{"fields": fields, "values": values}]}
### --- --- ---
"""
try:
# Extract the actual payload from input_data format
fields = payload["input_data"][0]["fields"]
values = payload["input_data"][0]["values"][0]
# Create a dictionary from fields and values
params = dict(zip(fields, values))
# Extract COS configuration
cos_config = params.get('cos_config', {})
# Verify all required config values are present
required_configs = ['bucket_name', 'api_key', 'instance_id', 'auth_endpoint', 'endpoint_url']
missing_configs = [k for k in required_configs if k not in cos_config or not cos_config[k]]
if missing_configs:
return {
'predictions': [{
'fields': ['status', 'message'],
'values': [['error', f"Missing required configuration: {', '.join(missing_configs)}"]]
}]
}
# Get function parameters
source_urls = params.get('source_urls', [])
if not source_urls:
return {
'predictions': [{
'fields': ['status', 'message'],
'values': [['error', "Missing required parameter: source_urls"]]
}]
}
# Convert single URL to list if necessary
if isinstance(source_urls, str):
source_urls = [source_urls]
prefix = params.get('prefix', '')
http_method = params.get('http_method', 'GET')
# Initialize COS client
cos_client = ibm_boto3.client(
"s3",
ibm_api_key_id=cos_config['api_key'],
ibm_service_instance_id=cos_config['instance_id'],
ibm_auth_endpoint=cos_config['auth_endpoint'],
config=Config(signature_version="oauth"),
endpoint_url=cos_config['endpoint_url']
)
# Normalize prefix
if prefix:
prefix = prefix.strip('/')
if prefix:
prefix = f"{prefix}/"
# Track results for each URL
results = []
errors = []
for source_url in source_urls:
try:
# Setup download stream
session = requests.Session()
response = session.request(http_method, source_url, stream=True)
response.raise_for_status()
# Extract actual filename from response
filename = extract_filename_from_headers(response)
# Combine prefix with filename for the full COS key
target_key = f"{prefix}{filename}" if prefix else filename
# Upload file to COS
conf = ibm_boto3.s3.transfer.TransferConfig(
multipart_threshold=1024**2, # 1MB
max_concurrency=100
)
cos_client.upload_fileobj(
response.raw,
cos_config['bucket_name'],
target_key,
Config=conf
)
results.append({
"source_url": source_url,
"bucket": cos_config['bucket_name'],
"key": target_key,
"filename": filename,
"status": "success"
})
except Exception as e:
errors.append({
"source_url": source_url,
"error": str(e)
})
# Prepare response in watsonx.ai format
response_data = {
"successful_uploads": results,
"failed_uploads": errors,
"total_processed": len(source_urls),
"successful_count": len(results),
"failed_count": len(errors)
}
return {
'predictions': [{
'fields': ['status', 'data'],
'values': [['success' if results else 'error', response_data]]
}]
}
except Exception as e:
return {
'predictions': [{
'fields': ['status', 'message'],
'values': [['error', f"Error processing request: {str(e)}"]]
}]
}
return score
score = stream_file_to_cos() |