File size: 56,601 Bytes
6dbdb63
 
02bd626
 
6dbdb63
02bd626
 
 
 
 
 
 
 
 
 
6dbdb63
 
 
 
 
02bd626
 
 
6dbdb63
02bd626
 
 
 
 
 
 
 
 
 
 
 
 
6dbdb63
02bd626
 
 
 
 
6dbdb63
 
02bd626
 
6dbdb63
02bd626
6dbdb63
 
02bd626
6dbdb63
02bd626
 
 
6dbdb63
 
02bd626
6dbdb63
02bd626
 
 
50298a1
02bd626
 
50298a1
6dbdb63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02bd626
6dbdb63
 
02bd626
6dbdb63
02bd626
 
6dbdb63
02bd626
 
 
 
 
6dbdb63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02bd626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dbdb63
02bd626
 
 
 
 
6dbdb63
02bd626
 
 
6dbdb63
 
 
 
 
 
 
 
 
 
02bd626
6dbdb63
02bd626
6dbdb63
 
02bd626
 
6dbdb63
 
 
 
 
 
 
 
 
02bd626
6dbdb63
 
 
 
02bd626
6dbdb63
 
02bd626
 
 
6dbdb63
02bd626
 
 
6dbdb63
02bd626
 
6dbdb63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02bd626
 
 
 
6dbdb63
02bd626
 
 
 
 
 
6dbdb63
 
02bd626
 
 
 
6dbdb63
02bd626
6dbdb63
02bd626
6dbdb63
02bd626
 
 
 
 
 
 
 
 
 
 
 
6dbdb63
02bd626
 
 
 
 
 
 
 
 
 
 
 
6dbdb63
02bd626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dbdb63
02bd626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dbdb63
02bd626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dbdb63
02bd626
6dbdb63
02bd626
6dbdb63
02bd626
6dbdb63
02bd626
 
 
 
 
 
6dbdb63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02bd626
 
6dbdb63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02bd626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dbdb63
02bd626
 
 
 
 
 
 
 
 
 
fef7c76
02bd626
 
 
 
 
6dbdb63
02bd626
 
 
6dbdb63
d2e8fe4
02bd626
 
 
9810a92
8ad14f1
9810a92
 
 
 
 
 
 
6dbdb63
6f03937
9810a92
 
 
6dbdb63
9810a92
 
 
 
 
 
 
 
 
 
 
6dbdb63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02bd626
6dbdb63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02bd626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dbdb63
02bd626
 
 
 
 
 
6dbdb63
 
02bd626
 
 
 
6dbdb63
02bd626
 
 
 
 
 
 
 
6f03937
6ab8af1
02bd626
6ab8af1
 
 
 
02bd626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dbdb63
02bd626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dbdb63
02bd626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dbdb63
 
02bd626
 
 
 
 
 
 
 
 
6dbdb63
02bd626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dbdb63
 
 
 
 
 
02bd626
9810a92
02bd626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50298a1
02bd626
 
 
 
 
 
50298a1
02bd626
50298a1
 
 
6dbdb63
50298a1
 
02bd626
8733a6a
 
 
 
6dbdb63
8733a6a
 
6dbdb63
8733a6a
 
 
 
6dbdb63
8733a6a
 
 
 
 
 
02bd626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9810a92
02bd626
 
 
 
 
6dbdb63
02bd626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dbdb63
02bd626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dbdb63
02bd626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dbdb63
02bd626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dbdb63
02bd626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dbdb63
02bd626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dbdb63
02bd626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dbdb63
02bd626
 
6dbdb63
02bd626
6dbdb63
 
 
 
 
 
 
02bd626
 
 
 
6dbdb63
02bd626
 
 
6dbdb63
 
 
 
 
 
 
02bd626
 
 
 
 
6dbdb63
02bd626
 
 
6dbdb63
 
 
 
 
 
 
02bd626
 
 
 
6dbdb63
02bd626
 
 
 
 
 
 
 
 
 
6dbdb63
02bd626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685


import marimo

__generated_with = "0.13.0"
app = marimo.App(width="medium")


@app.cell
def _():
    import marimo as mo
    import os
    return mo, os


@app.function
def get_markdown_content(file_path):
    with open(file_path, 'r', encoding='utf-8') as file:
        content = file.read()
    return content


@app.cell
def _(mo):
    intro_text = get_markdown_content('intro_markdown/intro.md')
    intro_marimo = get_markdown_content('intro_markdown/intro_marimo.md')
    intro_notebook = get_markdown_content('intro_markdown/intro_notebook.md')
    intro_comparison = get_markdown_content('intro_markdown/intro_comparison.md')

    intro = mo.carousel([
        mo.md(f"{intro_text}"),
        mo.md(f"{intro_marimo}"),
        mo.md(f"{intro_notebook}"),
        mo.md(f"{intro_comparison}"),
    ])

    mo.accordion({"## Notebook Introduction":intro})
    return


@app.cell
def _(os):
    ### Imports
    from typing import Any, Dict, List, Optional, Pattern, Set, Union, Tuple
    from ibm_watsonx_ai import APIClient, Credentials
    from pathlib import Path
    import pandas as pd
    import mimetypes
    import requests
    import zipfile
    import polars
    import urllib3
    import tempfile
    import base64
    import uuid
    import ssl
    import time
    import json
    import ast
    import io
    import re

    # Set explicit temporary directory
    os.environ['TMPDIR'] = '/tmp/notebook_functions'

    # Make sure Python's tempfile module also uses this directory
    tempfile.tempdir = '/tmp/notebook_functions'

    def get_iam_token(api_key):
        return requests.post(
            'https://iam.cloud.ibm.com/identity/token',
            headers={'Content-Type': 'application/x-www-form-urlencoded'},
            data={'grant_type': 'urn:ibm:params:oauth:grant-type:apikey', 'apikey': api_key}
        ).json()['access_token']

    def setup_task_credentials(client):
        # Get existing task credentials
        existing_credentials = client.task_credentials.get_details()

        # Delete existing credentials if any
        if "resources" in existing_credentials and existing_credentials["resources"]:
            for cred in existing_credentials["resources"]:
                cred_id = client.task_credentials.get_id(cred)
                client.task_credentials.delete(cred_id)

        # Store new credentials
        return client.task_credentials.store()

    def get_cred_value(key, creds_var_name="baked_in_creds", default=""): ### Helper for working with preset credentials
        """
        Helper function to safely get a value from a credentials dictionary.

        Args:
            key: The key to look up in the credentials dictionary.
            creds_var_name: The variable name of the credentials dictionary.
            default: The default value to return if the key is not found.

        Returns:
            The value from the credentials dictionary if it exists and contains the key,
            otherwise returns the default value.
        """
        # Check if the credentials variable exists in globals
        if creds_var_name in globals():
            creds_dict = globals()[creds_var_name]
            if isinstance(creds_dict, dict) and key in creds_dict:
                return creds_dict[key]
        return default
    return (
        APIClient,
        Credentials,
        ast,
        get_iam_token,
        json,
        pd,
        setup_task_credentials,
        tempfile,
        uuid,
    )


@app.cell
def _(client_instantiation_form, os):
    if client_instantiation_form.value:
        client_setup = client_instantiation_form.value
    else:
        client_setup = None

    ### Extract Credential Variables:
    if client_setup is not None:
        wx_url = client_setup["wx_region"]
        wx_api_key = client_setup["wx_api_key"]
        os.environ["WATSONX_APIKEY"] = wx_api_key

        if client_setup["project_id"] is not None:
            project_id = client_setup["project_id"]
        else:
            project_id = None

        if client_setup["space_id"] is not None:
            space_id = client_setup["space_id"]
        else:
            space_id = None

    else:
        os.environ["WATSONX_APIKEY"] = ""
        project_id = None
        space_id = None
        wx_api_key = None
        wx_url = None
    return client_setup, project_id, space_id, wx_api_key, wx_url


@app.cell
def _(client_setup, get_iam_token, wx_api_key):
    if client_setup:
        token = get_iam_token(wx_api_key)
    else:
        token = None
    return


@app.cell
def _(mo):
    ### Credentials for the watsonx.ai SDK client

    # Endpoints
    wx_platform_url = "https://api.dataplatform.cloud.ibm.com"
    regions = {
        "US": "https://us-south.ml.cloud.ibm.com",
        "EU": "https://eu-de.ml.cloud.ibm.com",
        "GB": "https://eu-gb.ml.cloud.ibm.com",
        "JP": "https://jp-tok.ml.cloud.ibm.com",
        "AU": "https://au-syd.ml.cloud.ibm.com",
        "CA": "https://ca-tor.ml.cloud.ibm.com"
    }

    # Create a form with multiple elements
    client_instantiation_form = (
        mo.md('''
        ###**watsonx.ai credentials:**

        {wx_region}

        {wx_api_key}

        {space_id}
    ''').style(max_height="300px", overflow="auto", border_color="blue")
        .batch(
            wx_region = mo.ui.dropdown(regions, label="Select your watsonx.ai region:", value="US", searchable=True),
            wx_api_key = mo.ui.text(placeholder="Add your IBM Cloud api-key...", label="IBM Cloud Api-key:", kind="password"),
            project_id = mo.ui.text(placeholder="Add your watsonx.ai project_id...", label="Project_ID:", kind="text"),
            space_id = mo.ui.text(placeholder="Add your watsonx.ai space_id...", label="Space_ID:", kind="text")
        ,)
        .form(show_clear_button=True, bordered=False)
    )

    return (client_instantiation_form,)


@app.cell
def _(
    APIClient,
    Credentials,
    client_setup,
    project_id,
    setup_task_credentials,
    space_id,
    wx_api_key,
    wx_url,
):
    ### Instantiate the watsonx.ai client
    if client_setup:
        wx_credentials = Credentials(
            url=wx_url,
            api_key=wx_api_key
        )

        if project_id:
            project_client = APIClient(credentials=wx_credentials, project_id=project_id)
        else:
            project_client = None

        if space_id:
            deployment_client = APIClient(credentials=wx_credentials, space_id=space_id)
        else:
            deployment_client = None

        if project_client is not None:
            task_credentials_details = setup_task_credentials(project_client)
        else:
            task_credentials_details = setup_task_credentials(deployment_client)
    else:
        wx_credentials = None
        project_client = None
        deployment_client = None
        task_credentials_details = None

    if project_client is not None or deployment_client is not None:
        client_callout_kind = "success"
    else:
        client_callout_kind = "neutral"
    return client_callout_kind, deployment_client


@app.cell
def _(mo):
    template_variants = [
        "Base",
        "Stream Files to IBM COS [Example]",
    ]
    template_variant = mo.ui.dropdown(template_variants, label="Code Template:", value="Base")
    return (template_variant,)


@app.cell
def _(client_callout_kind, client_instantiation_form, mo, template_variant):
    client_callout = mo.callout(template_variant, kind=client_callout_kind)
    client_stack = mo.hstack([client_instantiation_form, client_callout], align="center", justify="space-around")
    return (client_stack,)


@app.cell
def _(
    client_stack,
    deploy_fnc,
    deployment_definition,
    fm,
    function_editor,
    hw_selection_table,
    mo,
    package_analysis_stack,
    package_meta,
    purge_tabs,
    sc_m,
    schema_editors,
    selection_table,
    ss_asset_details,
    upload_func,
    yaml_template,
):
    client_section = mo.md(f'''
        ###**Instantiate your watsonx.ai client:**

        1. Select a region from the dropdown menu

        2. Provide an IBM Cloud Apikey and watsonx.ai deployment space id

        3. Once you submit, the area with the code template will turn green if successful

        4. Select a base (provide baseline format) or example code function template

        ---

        {client_stack}

    ''')

    sc_tabs = mo.ui.tabs(
        {
            "Schema Option Selection": sc_m,
            "Schema Definition": mo.md(f"""
            ####**Edit the schema definitions you selected in the previous tab.**<br>
                                       {schema_editors}"""),
        }
    )

    function_section = mo.md(f'''###**Create your function from the template:**

        1. Use the code editor window to create a function to deploy
        <br>
           The function must:
           <br>
                --- Include a payload and score element
                <br>
                --- Have the same function name in both the score = <name>() segment and the Function Name input field below
                <br>
                --- Additional details can be found here -> [watsonx.ai - Writing deployable Python functions
    ](https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/ml-deploy-py-function-write.html?utm_medium=Exinfluencer&utm_source=ibm_developer&utm_content=in_content_link&utm_term=10006555&utm_id=blogs_awb-tekton-optimizations-for-kubeflow-pipelines-2-0&context=wx&audience=wdp)

        3. Click submit, then proceed to select whether you wish to add:
        <br>
                --- An input schema (describing the format of the variables the function takes) **[Optional]**
            <br>
                --- An output schema (describing the format of the output results the function returns) **[Optional]**
            <br>
                --- An sample input example (showing an example of a mapping of the input and output schema to actual values.) **[Optional]**

        4. Fill in the function name field **(must be exactly the same as in the function editor)**

        5. Add a description and metadata tags **[Optional]**

    ---

        {function_editor}

    ---

        {sc_tabs}

    ---

        {fm}

    ''')

    upload_section = mo.md(f'''
        ###**Review and Upload your function**

        1. Review the function metadata specs JSON

        2. Select a software specification if necessary (default for python functions is pre-selected), this is the runtime environment of python that your function will run in. Environments on watsonx.ai come pre-packaged with many different libraries, if necessary install new ones by adding them into the function as a `subprocess.check_output('pip install <package_name>', shell=True)` command.

        3. Once your are satisfied, click the upload function button and wait for the response.

        > If you see no table of software specs, you haven't activated your watsonx.ai client.

        ---

        {selection_table}

        ---

        {upload_func}

    ''')

    deployment_section = mo.md(f'''
        ###**Deploy your function:**

        1. Select a hardware specification (vCPUs/GB) that you want your function deployed on
        <br>
        --- XXS and XS cost the same (0.5 CUH per hour, so XS is the better option
        <br>
        --- Select larger instances for more resource intensive tasks or runnable jobs

        2. Select the type of deployment:
        <br>
        --- Function (Online) for always-on endpoints - Always available and low latency, but consume resources continuously for every hour they are deployed.
        <br>
        --- Batch (Batch) for runnable jobs - Only consume resources during job runs, but aren't as flexible to deploy.

        3. If you've selected Function, pick a completely unique (globally, not just your account) deployment serving name that will be in the endpoint url.

        4. Once your are satisfied, click the deploy function button and wait for the response.

        ---

        {hw_selection_table}

        ---

        {deployment_definition}

        ---

        {deploy_fnc}

    ''')

    purging_section = mo.md(f'''
        ###**Helper Purge Functions:**

        These functions help you retrieve, select and delete deployments, data assets or repository assets (functions, models, etc.) that you have in the deployment space. This is meant to support fast cleanup.

        Select the tab based on what you want to delete, then click each of the buttons one by one after the previous gives a response.

        ---

        {purge_tabs}

    ''')


    packages_section = mo.md(f'''
        ###**If needed - Create a custom software-spec with added python packages**

        1. Check to see if the python library you want to use is already available inside watsonx.ai's runtime environment base specs for deployed functions by adding them as a comma separated list, e.g. - plotly, ibm-watsonx-ai==1.3.6, etc. into the text area.

        2. If you wish to see all the packages already present, check the box to return it alognside your validation results.

        ---

        {package_analysis_stack}

        ---

        3. If it isn't, you can create a custom software spec that adds a package_extension add-on to it. Use the template selector to see some examples, but when you are ready add your packages in the code editor after the "pip:" section.

        {yaml_template}

        4. Give your package extension and software spec names and descriptions and submit.

        5. You will find it in the Function Upload table afterward.

        ---

        {package_meta}

        ---

        Results:

        {ss_asset_details}

    ''')
    return (
        client_section,
        deployment_section,
        function_section,
        packages_section,
        upload_section,
    )


@app.cell
def _(client_section, mo):
    ui_accordion_section_1 = mo.accordion(
        {"Section 1: **watsonx.ai Credentials**": client_section}
    ) 
    ui_accordion_section_1
    return


@app.cell
def _(function_section, mo):
    ui_accordion_section_2 = mo.accordion(
        {"Section 2: **Function Creation**": function_section}
    ) 
    ui_accordion_section_2
    return


@app.cell
def _(mo, packages_section):
    ui_accordion_section_3 = mo.accordion(
        {"Section 3: **Create a Package Extension (Optional)**": packages_section}
    ) 
    ui_accordion_section_3
    return


@app.cell
def _(mo, upload_section):
    ui_accordion_section_4 = mo.accordion(
        {"Section 4: **Function Upload**": upload_section}
    ) 
    ui_accordion_section_4
    return


@app.cell
def _(deployment_section, mo):
    ui_accordion_section_5 = mo.accordion(
        {"Section 5: **Function Deployment**": deployment_section}
    ) 
    ui_accordion_section_5
    return


@app.cell
def _(mo, packages_section):
    ui_accordion_section_6 = mo.accordion(
        {"Section 6: **Helper Functions**": packages_section}
    ) 
    ui_accordion_section_6
    return


@app.cell
def _(mo, template_variant):
    # Template for WatsonX.ai deployable function
    if template_variant.value == "Stream Files to IBM COS [Example]":
        with open("stream_files_to_cos.py", "r") as file:
            template = file.read()
    else:
        template = '''def your_function_name():

        import subprocess
        subprocess.check_output('pip install gensim', shell=True)
        import gensim

        def score(input_data):
            message_from_input_payload = payload.get("input_data")[0].get("values")[0][0]
            response_message = "Received message - {0}".format(message_from_input_payload)

            # Score using the pre-defined model
            score_response = {
                'predictions': [{'fields': ['Response_message_field', 'installed_lib_version'],
                                'values': [[response_message, gensim.__version__]]
                                }]
            }
            return score_response

        return score

    score = your_function_name()
            '''

    function_editor = (
        mo.md('''
        #### **Create your function by editing the template:**

        {editor}

        ''')
        .batch(
            editor = mo.ui.code_editor(value=template, language="python", min_height=200, theme="dark")
        )
        .form(show_clear_button=True, bordered=False)
        )

    # function_editor
    return (function_editor,)


@app.cell
def _(ast, function_editor, mo, os):
    function_name = None
    if function_editor.value:
        # Get the edited code from the function editor
        code = function_editor.value['editor']
        # Extract function name using AST without executing the code

        try:
            # Parse the code to find function definitions
            parsed_ast = ast.parse(code)
            for node in parsed_ast.body:
                if isinstance(node, ast.FunctionDef):
                    function_name = node.name
                    break

            if function_name is not None:
                # Set deployable_function to None since we're not executing the code
                deployable_function = None
                mo.md(f"Found function: '{function_name}' (using file path approach)")

                # Create the directory if it doesn't exist
                save_dir = "/tmp/notebook_functions"
                os.makedirs(save_dir, exist_ok=True)
                # Save the function code to a file
                file_path = os.path.join(save_dir, f"{function_name}.py")
                with open(file_path, "w") as f:
                    f.write(code)
            else:
                mo.md("No function found in the editor code")
        except SyntaxError as e:
            mo.md(f"Syntax error in function code: {str(e)}")
    return (function_name,)


@app.cell
def _():
    yaml_templates = {
        "empty": """dependencies:
      - pip
      - pip:
        - <library_name>
        - ...
    """,
        "llama_index_and_scikit": """dependencies:
      - pip
      - pip:
        - scikit-learn==1.6.1
        - scikit-llm==1.4.1
        - plotly==6.0.1
        - altair==5.5.0
        - PyMuPDF==1.25.1
        - llama-index==0.12.24
        - llama-index-readers-file==0.4.6
        - llama-index-readers-web==0.3.8
    """,
        "data_product_hub": """dependencies:
      - pip
      - pip:
        - PyMuPDF==1.25.1
        - llama-index==0.12.24
        - llama-index-readers-file==0.4.6
        - llama-index-readers-web==0.3.8
        - plotly==6.0.1
        - altair==5.5.0
        - dask==2025.2.0
        - dph-services==0.4.0
    """,
        "watsonx_data": """dependencies:
      - pip
      - pip:
        - prestodb
        - PyMuPDF==1.25.1
        - llama-index==0.12.24
        - llama-index-readers-file==0.4.6
        - llama-index-readers-web==0.3.8
        - ibm-watsonxdata==0.4.0
    """
    }
    return (yaml_templates,)


@app.cell
def _(mo, yaml_templates):
    yaml_template = mo.ui.dropdown(yaml_templates, searchable=True, label="**Select a template:**", value="empty")
    return (yaml_template,)


@app.cell
def _(tempfile):
    def create_yaml_tempfile(yaml_editor_value):
        """Creates temporary YAML file and returns its path"""
        temp_file = tempfile.NamedTemporaryFile(suffix='.yaml', delete=False)

        # Access the actual YAML content within the dictionary structure
        if isinstance(yaml_editor_value, dict) and 'yml_editor' in yaml_editor_value:
            # Extract the YAML content string from the yml_editor key
            yaml_content = yaml_editor_value['yml_editor']
        else:
            # Use as is if it's already a string or has unexpected structure
            yaml_content = yaml_editor_value

        # Write the content to the file
        with open(temp_file.name, 'w') as f:
            f.write(str(yaml_content))

        return temp_file.name
    return (create_yaml_tempfile,)


@app.cell
def _(mo, yaml_template):
    pkg_types = {"Conda Yaml":"conda_yml","Custom user library":"custom_library"}

    package_meta = (
        mo.md('''**Create your Conda YAML by editing the template:**

        {yml_editor}

        {package_name}

        {package_description}

        {software_spec_name}

        {software_spec_description}
        ''')
        .batch(
            yml_editor = mo.ui.code_editor(value=yaml_template.value, language="yaml", min_height=100, theme="dark"),
            package_name = mo.ui.text(placeholder="Python Package for...", 
                                      label="Package Extension Name:", 
                                      kind="text", 
                                      value="Custom Python Package"),
            software_spec_name = mo.ui.text(placeholder="Software Spec Name", 
                                            label="Custom Software Spec Name:", 
                                            kind="text", value="Extended Python Function Software Spec"),
            package_description = mo.ui.text_area(placeholder="Write a description for your package.",
                                                  label="Package Description:", 
                                                  value=" "),
            software_spec_description = mo.ui.text_area(placeholder="Write a description for your software spec.", 
                                                        label="Software Spec Description:", 
                                                        value=" "),
            package_type = mo.ui.dropdown(pkg_types, 
                                          label="Select your package type:", 
                                          value="Conda Yaml")
        )
        .form(show_clear_button=True, bordered=False)
        )
    return (package_meta,)


@app.cell
def _(mo):
    check_packages =(mo.md('''
        **Check if a package you want to use is in the base software_specification already:**

        {package_list}

        {return_full_list}
        ''')
        .batch(
            package_list = mo.ui.text_area(placeholder="Add packages as a comma separated list (with or without versions)."),
            return_full_list = mo.ui.checkbox(value=False, label="Return a full list of packages in the base software specification.")
        )
        .form(show_clear_button=True, bordered=False)
    )
    return (check_packages,)


@app.cell
def _(check_packages):
    if check_packages.value is not None:
        packages = check_packages.value['package_list']
        verification_list = [item.strip() for item in packages.split(',')]
        full_list_return = check_packages.value['return_full_list']
    else:
        packages = None
        verification_list = None
        full_list_return = None
    return full_list_return, verification_list


@app.cell
def _(
    analyze_software_spec,
    base_software_spec,
    full_list_return,
    verification_list,
    visualize_software_spec,
):
    if verification_list is not None:
        pkg_analysis = analyze_software_spec(base_software_spec, verification_list, return_full_sw_package_list=full_list_return)
        package_df = visualize_software_spec(pkg_analysis, verification_list)
    else:
        pkg_analysis = None
        package_df = None
    return (package_df,)


@app.cell
def _(check_packages, mo, package_df):
    package_analysis_stack = mo.vstack([check_packages, package_df], justify="center")
    return (package_analysis_stack,)


@app.cell
def _(deployment_client):
    if deployment_client is not None:
        base_sw_spec_id = "45f12dfe-aa78-5b8d-9f38-0ee223c47309"
        base_software_spec = deployment_client.software_specifications.get_details(base_sw_spec_id)
    else:
        base_sw_spec_id = None
        base_software_spec = None
    return base_software_spec, base_sw_spec_id


@app.cell
def _(create_yaml_tempfile, deployment_client, package_meta):
    if package_meta.value is not None and deployment_client is not None:
        pe_metadata = {
            deployment_client.package_extensions.ConfigurationMetaNames.NAME: package_meta.value['package_name'],
            deployment_client.package_extensions.ConfigurationMetaNames.TYPE: package_meta.value['package_type'],
    deployment_client.software_specifications.ConfigurationMetaNames.DESCRIPTION:package_meta.value['package_description']
        }
        yaml_file_path = create_yaml_tempfile(package_meta.value['yml_editor'])
    else:
        pe_metadata = {
        }
        yaml_file_path = None

    return pe_metadata, yaml_file_path


@app.cell
def _(
    base_sw_spec_id,
    deployment_client,
    package_meta,
    pe_metadata,
    yaml_file_path,
):
    if yaml_file_path is not None:
        ### Stores the package extension
        pe_asset_details = deployment_client.package_extensions.store(
            meta_props=pe_metadata,
            file_path=yaml_file_path
        )
        package_id = pe_asset_details["metadata"]["asset_id"]
        ### Creates a custom software specification based on the standard python function spec_id - "45f12dfe-aa78-5b8d-9f38-0ee223c47309"
        ss_metadata = {
            deployment_client.software_specifications.ConfigurationMetaNames.NAME: package_meta.value['software_spec_name'],
            deployment_client.software_specifications.ConfigurationMetaNames.DESCRIPTION: package_meta.value['software_spec_description'],
            deployment_client.software_specifications.ConfigurationMetaNames.BASE_SOFTWARE_SPECIFICATION: {'guid': base_sw_spec_id},
            deployment_client.software_specifications.ConfigurationMetaNames.PACKAGE_EXTENSIONS: [{'guid': package_id}]
        }
        ss_asset_details = deployment_client.software_specifications.store(meta_props=ss_metadata)
    else:
        pe_asset_details = None
        package_id = None
        ss_metadata = {}
        ss_asset_details = None

    # ss_asset_details
    return (ss_asset_details,)


@app.cell
def _(deployment_client, mo, pd):
    if deployment_client:
        supported_specs = deployment_client.software_specifications.list()[
            deployment_client.software_specifications.list()['STATE'] == 'supported'
        ]

        # Reset the index to start from 0
        supported_specs = supported_specs.reset_index(drop=True)

        # Create a mapping dictionary for framework names based on software specifications
        framework_mapping = {
            "tensorflow_rt24.1-py3.11": "TensorFlow",
            "pytorch-onnx_rt24.1-py3.11": "PyTorch",
            "onnxruntime_opset_19": "ONNX or ONNXRuntime",
            "runtime-24.1-py3.11": "AI Services/Python Functions/Python Scripts",
            "autoai-ts_rt24.1-py3.11": "AutoAI",
            "autoai-kb_rt24.1-py3.11": "AutoAI",
            "runtime-24.1-py3.11-cuda": "CUDA-enabled (GPU) Python Runtime",
            "runtime-24.1-r4.3": "R Runtime 4.3",
            "spark-mllib_3.4": "Apache Spark 3.4",
            "autoai-rag_rt24.1-py3.11": "AutoAI RAG"
        }

        # Define the preferred order for items to appear at the top
        preferred_order = [
            "runtime-24.1-py3.11",
            "runtime-24.1-py3.11-cuda",
            "runtime-24.1-r4.3",
            "ai-service-v5-software-specification",
            "autoai-rag_rt24.1-py3.11",
            "autoai-ts_rt24.1-py3.11",
            "autoai-kb_rt24.1-py3.11",
            "tensorflow_rt24.1-py3.11",
            "pytorch-onnx_rt24.1-py3.11",
            "onnxruntime_opset_19",
            "spark-mllib_3.4",
        ]

        # Create a new column for sorting
        supported_specs['SORT_ORDER'] = supported_specs['NAME'].apply(
            lambda x: preferred_order.index(x) if x in preferred_order else len(preferred_order)
        )

        # Sort the DataFrame by the new column
        supported_specs = supported_specs.sort_values('SORT_ORDER').reset_index(drop=True)

        # Drop the sorting column as it's no longer needed
        supported_specs = supported_specs.drop(columns=['SORT_ORDER'])

        # Drop the REPLACEMENT column if it exists and add NOTES column
        if 'REPLACEMENT' in supported_specs.columns:
            supported_specs = supported_specs.drop(columns=['REPLACEMENT'])

        # Add NOTES column with framework information
        supported_specs['NOTES'] = supported_specs['NAME'].map(framework_mapping).fillna("Other")

        # Create a table with single-row selection
        selection_table = mo.ui.table(
            supported_specs,
            selection="single",  # Only allow selecting one row
            label="#### **Select a supported software_spec runtime for your function asset** (For Python Functions select - *'runtime-24.1-py3.11'* ):",
            initial_selection=[0],  # Now selecting the first row, which should be runtime-24.1-py3.11
            page_size=6
        )
    else:
        sel_df = pd.DataFrame(
        data=[["ID", "Activate deployment_client."]], 
        columns=["ID", "VALUE"]
        )

        selection_table = mo.ui.table(
            sel_df,
            selection="single",  # Only allow selecting one row
            label="You haven't activated the Deployment_Client",
            initial_selection=[0]
        )

    return (selection_table,)


@app.cell
def _(mo):
    input_schema_checkbox = mo.ui.checkbox(label="Add input schema (optional)")
    output_schema_checkbox = mo.ui.checkbox(label="Add output schema (optional)")
    # sample_input_checkbox = mo.ui.checkbox(label="Add sample input example (optional)")
    return input_schema_checkbox, output_schema_checkbox


@app.cell
def _(
    function_name,
    input_schema_checkbox,
    mo,
    output_schema_checkbox,
    selection_table,
    template_variant,
):
    if selection_table.value['ID'].iloc[0]:
        # Create the input fields
        if function_name is not None:
            fnc_nm = function_name
        else:
            if template_variant.value == "Stream Files to IBM COS [Example]":
                fnc_nm = "stream_file_to_cos"
            else:
                fnc_nm = "your_function_name"

        uploaded_function_name = mo.ui.text(placeholder="<Must be the same as the name in editor>", label="Function Name:", kind="text", value=f"{fnc_nm}", full_width=False)
        tags_editor = mo.ui.array(
            [mo.ui.text(placeholder="Metadata Tags..."), mo.ui.text(), mo.ui.text()],
            label="Optional Metadata Tags"
        )
        software_spec = selection_table.value['ID'].iloc[0]

        description_input = mo.ui.text_area(
            placeholder="Write a description for your function...)",
            label="Description",
            max_length=256,
            rows=5,
            full_width=True
        )


        func_metadata=mo.hstack([
            description_input,
            mo.hstack([
                uploaded_function_name,
                tags_editor,
            ], justify="start", gap=1, align="start", wrap=True)
        ],
            widths=[0.6,0.4],
            gap=2.75
        )

        schema_metadata=mo.hstack([
            input_schema_checkbox,
            output_schema_checkbox,
            # sample_input_checkbox
        ],
            justify="center", gap=1, align="center", wrap=True
        )

    fm = mo.vstack([
        func_metadata,
        ],
        align="center",
        gap=2
    )
    sc_m = mo.vstack([
        schema_metadata,
        mo.md("**Make sure to select the checkbox options before filling in descriptions and tags or they will reset.**")
        ],
        align="center",
        gap=2
    )
    return (
        description_input,
        fm,
        sc_m,
        software_spec,
        tags_editor,
        uploaded_function_name,
    )


@app.cell
def _(json, mo, template_variant):
    if template_variant.value == "Stream Files to IBM COS [Example]":
        from cos_stream_schema_examples import input_schema, output_schema
    else:
        input_schema = [
            {
                'id': '1',
                'type': 'struct',
                'fields': [
                    {
                    'name': '<variable name 1>', 
                    'type': 'string',
                    'nullable': False, 
                    'metadata': {}
                    },
                    {
                    'name': '<variable name 2>', 
                    'type': 'string', 
                    'nullable': False, 
                    'metadata': {}
                    }
                ]
            }
        ]

        output_schema = [
            {
                'id': '1',
                'type': 'struct',
                'fields': [
                    {
                    'name': '<output return name>', 
                    'type': 'string', 
                    'nullable': False, 
                    'metadata': {}
                    }
                ]
            }
        ]



    input_schema_editor = mo.ui.code_editor(value=json.dumps(input_schema, indent=4), language="python", min_height=100,theme="dark")
    output_schema_editor = mo.ui.code_editor(value=json.dumps(output_schema, indent=4), language="python", min_height=100,theme="dark")

    schema_editors = mo.accordion(
        {
            """**Input Schema Metadata Editor**""": input_schema_editor,
            """**Output Schema Metadata Editor**""": output_schema_editor,
        }, multiple=True
    )

    # schema_editors
    return input_schema_editor, output_schema_editor, schema_editors


@app.cell
def _(
    ast,
    deployment_client,
    description_input,
    function_editor,
    input_schema_checkbox,
    input_schema_editor,
    json,
    mo,
    os,
    output_schema_checkbox,
    output_schema_editor,
    selection_table,
    software_spec,
    tags_editor,
    uploaded_function_name,
):
    get_upload_status, set_upload_status = mo.state("No uploads yet")

    function_meta = {}

    if selection_table.value['ID'].iloc[0] and deployment_client is not None:
        # Start with the base required fields
        function_meta = {
            deployment_client.repository.FunctionMetaNames.NAME: f"{uploaded_function_name.value}" or "your_function_name",
            deployment_client.repository.FunctionMetaNames.SOFTWARE_SPEC_ID: software_spec or "45f12dfe-aa78-5b8d-9f38-0ee223c47309"
        }

        # Add optional fields if they exist
        if tags_editor.value:
            # Filter out empty strings from the tags list
            filtered_tags = [tag for tag in tags_editor.value if tag and tag.strip()]
            if filtered_tags:  # Only add if there are non-empty tags
                function_meta[deployment_client.repository.FunctionMetaNames.TAGS] = filtered_tags


        if description_input.value:
            function_meta[deployment_client.repository.FunctionMetaNames.DESCRIPTION] = description_input.value

        # Add input schema if checkbox is checked
        if input_schema_checkbox.value:
            try:
                function_meta[deployment_client.repository.FunctionMetaNames.INPUT_DATA_SCHEMAS] = json.loads(input_schema_editor.value)
            except json.JSONDecodeError:
                # If JSON parsing fails, try Python literal evaluation as fallback
                function_meta[deployment_client.repository.FunctionMetaNames.INPUT_DATA_SCHEMAS] = ast.literal_eval(input_schema_editor.value)

        # Add output schema if checkbox is checked
        if output_schema_checkbox.value:
            try:
                function_meta[deployment_client.repository.FunctionMetaNames.OUTPUT_DATA_SCHEMAS] = json.loads(output_schema_editor.value)
            except json.JSONDecodeError:
                # If JSON parsing fails, try Python literal evaluation as fallback
                function_meta[deployment_client.repository.FunctionMetaNames.OUTPUT_DATA_SCHEMAS] = ast.literal_eval(output_schema_editor.value)

        # Add sample input if checkbox is checked
        # if sample_input_checkbox.value:
        #     try:
        #         function_meta[deployment_client.repository.FunctionMetaNames.SAMPLE_SCORING_INPUT] = json.loads(sample_input_editor.value)
        #     except json.JSONDecodeError:
        #         # If JSON parsing fails, try Python literal evaluation as fallback
        #         function_meta[deployment_client.repository.FunctionMetaNames.SAMPLE_SCORING_INPUT] = ast.literal_eval(sample_input_editor.value)

    def upload_function(function_meta, use_function_object=False):
        """
        Uploads a Python function to watsonx.ai as a deployable asset.
        Parameters:
        function_meta (dict): Metadata for the function
        use_function_object (bool): Whether to use function object (True) or file path (False)
        Returns:
        dict: Details of the uploaded function
        """
        # Store the original working directory
        original_dir = os.getcwd()

        try:
            # Create temp file from the code in the editor
            code_to_deploy = function_editor.value['editor']
            # This function is defined elsewhere in the notebook
            func_name = uploaded_function_name.value or "your_function_name"
            # Ensure function_meta has the correct function name
            function_meta[deployment_client.repository.FunctionMetaNames.NAME] = func_name
            # Save the file locally first
            save_dir = "/tmp/notebook_functions"
            os.makedirs(save_dir, exist_ok=True)
            file_path = f"{save_dir}/{func_name}.py"
            with open(file_path, "w", encoding="utf-8") as f:
                f.write(code_to_deploy)

            if use_function_object:
                # Import the function from the file
                import sys
                import importlib.util
                # Add the directory to Python's path
                sys.path.append(save_dir)
                # Import the module
                spec = importlib.util.spec_from_file_location(func_name, file_path)
                module = importlib.util.module_from_spec(spec)
                spec.loader.exec_module(module)
                # Get the function object
                function_object = getattr(module, func_name)

                # Change to /tmp directory before calling IBM Watson SDK functions
                os.chdir('/tmp/notebook_functions')

                # Upload the function object
                mo.md(f"Uploading function object: {func_name}")
                func_details = deployment_client.repository.store_function(function_object, function_meta)
            else:
                # Change to /tmp directory before calling IBM Watson SDK functions
                os.chdir('/tmp/notebook_functions')

                # # Upload using the absolute file path
                # abs_file_path = os.path.abspath(file_path)
                # mo.md(f"Uploading function from file: {abs_file_path}")

                # # Using the absolute file path might help in some environments
                # func_details = deployment_client.repository.store_function(abs_file_path, function_meta)
                # Upload using the file path approach

                # Create a zip file of the Python module
                import gzip
                import shutil

                # Path for the gzipped file
                gz_path = f"{save_dir}/{func_name}.py.gz"

                # Create gzip file
                with open(file_path, 'rb') as f_in:
                    with gzip.open(gz_path, 'wb') as f_out:
                        shutil.copyfileobj(f_in, f_out)

                # Upload using the gzipped file path
                mo.md(f"Uploading function from gzip: {gz_path}")
                func_details = deployment_client.repository.store_function(gz_path, function_meta)

                # mo.md(f"Uploading function from file: {file_path}")
                # func_details = deployment_client.repository.store_function(file_path, function_meta)

            set_upload_status(f"Latest Upload - id - {func_details['metadata']['id']}")
            return func_details
        except Exception as e:
            set_upload_status(f"Error uploading function: {str(e)}")
            mo.md(f"Detailed error: {str(e)}")
            raise
        finally:
            # Always change back to the original directory, even if an exception occurs
            os.chdir(original_dir)

    upload_status =  mo.state("No uploads yet")

    upload_button = mo.ui.button(
        label="Upload Function",
        on_click=lambda _: upload_function(function_meta, use_function_object=False),
        kind="success",
        tooltip="Click to upload function to watsonx.ai"
    )

    # function_meta
    return get_upload_status, upload_button


@app.cell
def _(get_upload_status, mo, upload_button):
    # Upload your function 
    if upload_button.value:
        try:
            upload_result = upload_button.value
            artifact_id = upload_result['metadata']['id']
        except Exception as e:
            mo.md(f"Error: {str(e)}")

    upload_func = mo.vstack([
        upload_button,
        mo.md(f"**Status:** {get_upload_status()}")
    ], justify="space-around", align="center")
    return artifact_id, upload_func


@app.cell
def _(deployment_client, mo, pd, upload_button, uuid):
    def reorder_hardware_specifications(df):
        """
        Reorders a hardware specifications dataframe by type and size of environment
        without hardcoding specific hardware types.

        Parameters:
        df (pandas.DataFrame): The hardware specifications dataframe to reorder

        Returns:
        pandas.DataFrame: Reordered dataframe with reset index
        """
        # Create a copy to avoid modifying the original dataframe
        result_df = df.copy()

        # Define a function to extract the base type and size
        def get_sort_key(name):
            # Create a custom ordering list
            custom_order = [
                "XXS", "XS", "S", "M", "L", "XL",
                "XS-Spark", "S-Spark", "M-Spark", "L-Spark", "XL-Spark",
                "K80", "K80x2", "K80x4",
                "V100", "V100x2",
                "WXaaS-XS", "WXaaS-S", "WXaaS-M", "WXaaS-L", "WXaaS-XL",
                "Default Spark", "Notebook Default Spark", "ML"
            ]

            # If name is in the custom order list, use its index
            if name in custom_order:
                return (0, custom_order.index(name))

            # For any name not in the custom order, put it at the end
            return (1, name)

        # Add a temporary column for sorting
        result_df['sort_key'] = result_df['NAME'].apply(get_sort_key)

        # Sort the dataframe and drop the temporary column
        result_df = result_df.sort_values('sort_key').drop('sort_key', axis=1)

        # Reset the index
        result_df = result_df.reset_index(drop=True)

        return result_df

    if deployment_client and upload_button.value:

        hardware_specs = deployment_client.hardware_specifications.list()
        hardware_specs_df = reorder_hardware_specifications(hardware_specs)

        # Create a table with single-row selection
        hw_selection_table = mo.ui.table(
            hardware_specs_df,
            selection="single",  # Only allow selecting one row
            label="#### **Select a supported hardware_specification for your deployment** *(Default: 'XS' - 1vCPU_4GB Ram)*",
            initial_selection=[1],
            page_size=6,
            wrapped_columns=['DESCRIPTION']
        )

        deployment_type = mo.ui.radio(
        options={"Function":"Online (Function Endpoint)","Runnable Job":"Batch (Runnable Jobs)"}, value="Function", label="Select the Type of Deployment:", inline=True
        )
        uuid_suffix = str(uuid.uuid4())[:4]

        deployment_name = mo.ui.text(value=f"deployed_func_{uuid_suffix}", label="Deployment Name:", placeholder="<Must be completely unique>")
    else:
        hw_df = pd.DataFrame(
        data=[["ID", "Activate deployment_client."]], 
        columns=["ID", "VALUE"]
        )

        hw_selection_table = mo.ui.table(
            hw_df,
            selection="single",  # Only allow selecting one row
            label="You haven't activated the Deployment_Client",
            initial_selection=[0]
        )

    return deployment_name, deployment_type, hw_selection_table


@app.cell
def _(
    artifact_id,
    deployment_client,
    deployment_details,
    deployment_name,
    deployment_type,
    hw_selection_table,
    mo,
    upload_button,
):
    def deploy_function(artifact_id, deployment_type):
        """
        Deploys a function asset to watsonx.ai.

        Parameters:
        artifact_id (str): ID of the function artifact to deploy
        deployment_type (object): Type of deployment (online or batch)

        Returns:
        dict: Details of the deployed function
        """
        if not artifact_id:
            print("Error: No artifact ID provided. Please upload a function first.")
            return None

        if deployment_type.value == "Online (Function Endpoint)":  # Changed from "Online (Function Endpoint)"
            deployment_props = {
                deployment_client.deployments.ConfigurationMetaNames.NAME: deployment_name.value,
                deployment_client.deployments.ConfigurationMetaNames.ONLINE: {},
                deployment_client.deployments.ConfigurationMetaNames.HARDWARE_SPEC: {"id": selected_hw_config},
                deployment_client.deployments.ConfigurationMetaNames.SERVING_NAME: deployment_name.value,
            }
        else:  # "Runnable Job" instead of "Batch (Runnable Jobs)"
            deployment_props = {
                deployment_client.deployments.ConfigurationMetaNames.NAME: deployment_name.value,
                deployment_client.deployments.ConfigurationMetaNames.BATCH: {},
                deployment_client.deployments.ConfigurationMetaNames.HARDWARE_SPEC: {"id": selected_hw_config},
                # batch does not use serving names
            }

        try:
            print(deployment_props)
            # First, get the asset details to confirm it exists
            asset_details = deployment_client.repository.get_details(artifact_id)
            print(f"Asset found: {asset_details['metadata']['name']} with ID: {asset_details['metadata']['id']}")

            # Create the deployment
            deployed_function = deployment_client.deployments.create(artifact_id, deployment_props)
            print(f"Creating deployment from Asset: {artifact_id} with deployment properties {str(deployment_props)}")
            return deployed_function
        except Exception as e:
            print(f"Deployment error: {str(e)}")
            return None

    def get_deployment_id(deployed_function):
        deployment_id = deployment_client.deployments.get_uid(deployment_details)
        return deployment_id

    def get_deployment_info(deployment_id):
        deployment_info = deployment_client.deployments.get_details(deployment_id)
        return deployment_info

    deployment_status =  mo.state("No deployments yet")

    if hw_selection_table.value['ID'].iloc[0]:
        selected_hw_config = hw_selection_table.value['ID'].iloc[0]

    deploy_button = mo.ui.button(
        label="Deploy Function",
        on_click=lambda _: deploy_function(artifact_id, deployment_type),
        kind="success",
        tooltip="Click to deploy function to watsonx.ai"
    )

    if deployment_client and upload_button.value:
        deployment_definition = mo.hstack([
            deployment_type,
            deployment_name
        ], justify="space-around")
    else:
        deployment_definition = mo.hstack([
            "No Deployment Type Selected",
            "No Deployment Name Provided"
        ], justify="space-around")

    # deployment_definition
    return deploy_button, deployment_definition


@app.cell
def _(deploy_button, deployment_definition, mo):
    _ = deployment_definition

    deploy_fnc = mo.vstack([
        deploy_button,
        deploy_button.value
    ], justify="space-around", align="center")

    return (deploy_fnc,)


@app.cell(hide_code=True)
def _(deployment_client, mo, pd):
    ### Functions to List , Get ID's as a list and Purge of Assets

    def get_deployment_list():
        dep_df = deployment_client.deployments.list()
        dep_df = pd.DataFrame(dep_df)
        return dep_df

    def get_deployment_ids(df):
        dep_list = df['ID'].tolist()
        return dep_list

    #----

    def get_data_assets_list():
        data_a_df = deployment_client.data_assets.list()
        data_a_df = pd.DataFrame(data_a_df)
        return data_a_df

    def get_data_asset_ids(df):
        data_asset_list = df['ASSET_ID'].tolist()
        return data_asset_list

    #----

    def get_repository_list():
        rep_list_df = deployment_client.repository.list()
        rep_list_df = pd.DataFrame(rep_list_df)
        return rep_list_df

    def get_repository_ids(df):
        repository_list = df['ID'].tolist()
        return repository_list

    #----

    def delete_with_progress(ids_list, delete_function, item_type="items"):
        """
        Generic wrapper that adds a progress bar to any deletion function

        Parameters:
            ids_list: List of IDs to delete
            delete_function: Function that deletes a single ID
            item_type: String describing what's being deleted (for display)
        """
        with mo.status.progress_bar(
            total=len(ids_list) or 1,
            title=f"Purging {item_type}",
            subtitle=f"Deleting {item_type}...",
            completion_title="Purge Complete",
            completion_subtitle=f"Successfully deleted {len(ids_list)} {item_type}"
        ) as progress:
            for item_id in ids_list:
                delete_function(item_id)
                progress.update(increment=1)
            return f"Deleted {len(ids_list)} {item_type} successfully"

    # Use with existing deletion functions
    def delete_deployments(deployment_ids):
        return delete_with_progress(
            deployment_ids, 
            lambda id: deployment_client.deployments.delete(id),
            "deployments"
        )

    def delete_data_assets(data_asset_ids):
        return delete_with_progress(
            data_asset_ids, 
            lambda id: deployment_client.data_assets.delete(id),
            "data assets"
        )

    def delete_repository_items(repository_ids):
        return delete_with_progress(
            repository_ids, 
            lambda id: deployment_client.repository.delete(id),
            "repository items"
        )
    return (
        delete_data_assets,
        delete_deployments,
        delete_repository_items,
        get_data_asset_ids,
        get_data_assets_list,
        get_deployment_ids,
        get_deployment_list,
        get_repository_ids,
        get_repository_list,
    )


@app.cell
def _(get_data_assets_tab, get_deployments_tab, get_repository_tab, mo):
    if get_deployments_tab() is not None:
        deployments_table = mo.ui.table(get_deployments_tab())
    else:
        deployments_table = mo.md("No Table Loaded")

    if get_repository_tab() is not None:
        repository_table = mo.ui.table(get_repository_tab())
    else:
        repository_table = mo.md("No Table Loaded")

    if get_data_assets_tab() is not None:
        data_assets_table = mo.ui.table(get_data_assets_tab())
    else:
        data_assets_table = mo.md("No Table Loaded")

    return data_assets_table, deployments_table, repository_table


@app.cell
def _(
    deployments_table,
    get_deployment_id_list,
    get_deployments_button,
    mo,
    purge_deployments,
):
    deployments_purge_stack = mo.hstack([get_deployments_button, get_deployment_id_list, purge_deployments])
    deployments_purge_stack_results = mo.vstack([deployments_table, get_deployment_id_list.value, purge_deployments.value])

    deployments_purge_tab = mo.vstack([deployments_purge_stack, deployments_purge_stack_results])
    return (deployments_purge_tab,)


@app.cell
def _(
    get_repository_button,
    get_repository_id_list,
    mo,
    purge_repository,
    repository_table,
):
    repository_purge_stack = mo.hstack([get_repository_button, get_repository_id_list, purge_repository])

    repository_purge_stack_results = mo.vstack([repository_table, get_repository_id_list.value, purge_repository.value])

    repository_purge_tab = mo.vstack([repository_purge_stack, repository_purge_stack_results])
    return (repository_purge_tab,)


@app.cell
def _(
    data_assets_table,
    get_data_asset_id_list,
    get_data_assets_button,
    mo,
    purge_data_assets,
):
    data_assets_purge_stack = mo.hstack([get_data_assets_button, get_data_asset_id_list, purge_data_assets])
    data_assets_purge_stack_results = mo.vstack([data_assets_table, get_data_asset_id_list.value, purge_data_assets.value])

    data_assets_purge_tab = mo.vstack([data_assets_purge_stack, data_assets_purge_stack_results])
    return (data_assets_purge_tab,)


@app.cell
def _(data_assets_purge_tab, deployments_purge_tab, mo, repository_purge_tab):
    purge_tabs = mo.ui.tabs(
        {"Purge Deployments": deployments_purge_tab, "Purge Repository Assets": repository_purge_tab,"Purge Data Assets": data_assets_purge_tab }, lazy=False
    )

    return (purge_tabs,)


@app.cell
def _(mo):
    get_deployments_tab, set_deployments_tab = mo.state(None)
    get_repository_tab, set_repository_tab = mo.state(None)
    get_data_assets_tab, set_data_assets_tab = mo.state(None)
    return (
        get_data_assets_tab,
        get_deployments_tab,
        get_repository_tab,
        set_data_assets_tab,
        set_deployments_tab,
        set_repository_tab,
    )


@app.cell(hide_code=True)
def _(
    data_assets_table,
    delete_data_assets,
    delete_deployments,
    delete_repository_items,
    deployments_table,
    get_data_asset_ids,
    get_data_assets_list,
    get_deployment_ids,
    get_deployment_list,
    get_repository_ids,
    get_repository_list,
    mo,
    repository_table,
    set_data_assets_tab,
    set_deployments_tab,
    set_repository_tab,
):
    ### Temporary Function Purge - Assets
    get_data_assets_button = mo.ui.button(
        label="Get Data Assets Dataframe",
        on_click=lambda _: get_data_assets_list(),
        on_change=lambda value: set_data_assets_tab(value),
        kind="neutral",
    )

    get_data_asset_id_list = mo.ui.button(
        label="Turn Dataframe into List of IDs",
        on_click=lambda _: get_data_asset_ids(data_assets_table.value),
        kind="neutral",
    )

    purge_data_assets = mo.ui.button(
        label="Purge Data Assets",
        on_click=lambda _: delete_data_assets(get_data_asset_id_list.value),
        kind="danger",
    )

    ### Temporary Function Purge - Deployments
    get_deployments_button = mo.ui.button(
        label="Get Deployments Dataframe",
        on_click=lambda _: get_deployment_list(),
        on_change=lambda value: set_deployments_tab(value),
        kind="neutral",
    )

    get_deployment_id_list = mo.ui.button(
        label="Turn Dataframe into List of IDs",
        on_click=lambda _: get_deployment_ids(deployments_table.value),
        kind="neutral",
    )

    purge_deployments = mo.ui.button(
        label="Purge Deployments",
        on_click=lambda _: delete_deployments(get_deployment_id_list.value),
        kind="danger",
    )

    ### Repository Items Purge
    get_repository_button = mo.ui.button(
        label="Get Repository Dataframe",
        on_click=lambda _: get_repository_list(),
        on_change=lambda value: set_repository_tab(value),
        kind="neutral",
    )

    get_repository_id_list = mo.ui.button(
        label="Turn Dataframe into List of IDs",
        on_click=lambda _: get_repository_ids(repository_table.value),
        kind="neutral",
    )

    purge_repository = mo.ui.button(
        label="Purge Repository Items",
        on_click=lambda _: delete_repository_items(get_repository_id_list.value),
        kind="danger",
    )
    return (
        get_data_asset_id_list,
        get_data_assets_button,
        get_deployment_id_list,
        get_deployments_button,
        get_repository_button,
        get_repository_id_list,
        purge_data_assets,
        purge_deployments,
        purge_repository,
    )


if __name__ == "__main__":
    app.run()