Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
from io import BytesIO | |
import base64 | |
import random | |
import io | |
import re | |
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas | |
from streamlit_tags import st_tags | |
from streamlit_vertical_slider import vertical_slider | |
import pdf_generator | |
import datetime | |
# Set page config | |
st.set_page_config( | |
page_title="Pilot Drafting", | |
page_icon="🛫", | |
layout="wide", | |
initial_sidebar_state="collapsed" | |
) | |
# Password protection | |
def check_password(): | |
def password_entered(): | |
if st.session_state["password"] == st.secrets["app_password"]: | |
st.session_state["password_correct"] = True | |
del st.session_state["password"] | |
else: | |
st.session_state["password_correct"] = False | |
if "password_correct" not in st.session_state: | |
st.markdown("\n\n") | |
st.text_input("Enter the password", type="password", on_change=password_entered, key="password") | |
st.divider() | |
st.info("Developed by Milan Mrdenovic © IBM Norway 2025") | |
return False | |
elif not st.session_state["password_correct"]: | |
st.markdown("\n\n") | |
st.text_input("Enter the password", type="password", on_change=password_entered, key="password") | |
st.divider() | |
st.info("Developed by Milan Mrdenovic © IBM Norway 2025") | |
st.error("😕 Password incorrect") | |
return False | |
else: | |
return True | |
if not check_password(): | |
st.stop() | |
# Initialize session state | |
if 'current_page' not in st.session_state: | |
st.session_state.current_page = 0 | |
if 'answers' not in st.session_state: | |
st.session_state.answers = { | |
'workload_scope': { | |
'feature_prioritization': ['', '', '', '', ''], | |
'preferred_start_period': '', | |
'team_composition': { | |
'partner': '', | |
'ibm': '' | |
} | |
}, | |
'useful_assets': { | |
'solution_elements': [], | |
'ibm_software': [], | |
'open_source_supports': [] | |
}, | |
'pilot_evaluation': { | |
'metrics': [] | |
} | |
} | |
# Define the content for each page | |
pages = [ | |
{ | |
'title': "Scope a Manageable Workload", | |
'content': """ | |
Define the scope of your project to ensure a manageable workload. Consider the time commitments, deadlines, and feature prioritization. | |
""", | |
'input_key': 'workload_scope', | |
'input_type': 'custom' | |
}, | |
{ | |
'title': "Solution Elements", | |
'content': """ | |
Discuss the useful assets and libraries that can be utilized for the project. Consider Langchain, Langflow, ChromaDB, Jupyter Notebooks, etc. | |
""", | |
'input_key': 'useful_assets', | |
'input_type': 'custom' | |
}, | |
{ | |
'title': "Pilot Evaluation", | |
'content': """ | |
Plan for the metrics that need to be tracked for the project. Consider queries, token usage, F1 scores, precision, etc. | |
""", | |
'input_key': 'pilot_evaluation', | |
'input_type': 'custom' | |
}, | |
{ | |
'title': "Generate Evaluation Report", | |
'content': "You have completed the Pilot Drafting. \nClick the button below to generate and download your PDF report.", | |
'input_key': None | |
} | |
] | |
st.session_state.pages = pages | |
# Main Streamlit app | |
st.title("Pilot Drafting") | |
# Navigation buttons | |
col1, col2, col3 = st.columns([1, 2, 1]) | |
with col1: | |
if st.session_state.current_page > 0: | |
if st.button("Back"): | |
st.session_state.current_page -= 1 | |
st.rerun() | |
with col3: | |
if st.session_state.current_page < len(pages) - 1: | |
if st.button("Next", use_container_width=True): | |
st.session_state.current_page += 1 | |
st.rerun() | |
# Display current page | |
current_page = pages[st.session_state.current_page] | |
st.header(current_page['title']) | |
with st.expander("Description", expanded=False): | |
st.markdown(current_page['content']) | |
# Input fields | |
if 'input_key' in current_page and current_page['input_key'] is not None: | |
if current_page['input_key'] == 'workload_scope': | |
st.subheader("Workload Scope") | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
st.session_state.answers['workload_scope']['feature_prioritization'] = [st.text_area(f"Feature Prioritization {i+1}", value=st.session_state.answers['workload_scope']['feature_prioritization'][i], height=100) for i in range(5)] | |
with col2: | |
st.session_state.answers['workload_scope']['preferred_start_period'] = st.date_input("Preferred Start Period", value=(datetime.date.today(), datetime.date.today() + datetime.timedelta(days=30))) | |
with col3: | |
st.session_state.answers['workload_scope']['team_composition']['partner'] = st.text_area("Partner", value=st.session_state.answers['workload_scope']['team_composition']['partner'], height=150) | |
st.session_state.answers['workload_scope']['team_composition']['ibm'] = st.text_area("IBM", value=st.session_state.answers['workload_scope']['team_composition']['ibm'], height=150) | |
elif current_page['input_key'] == 'useful_assets': | |
st.info(st.session_state.answers['workload_scope']['feature_prioritization']) | |
st.subheader("Solution Elements") | |
col1, col2 = st.columns(2) | |
with col1: | |
st.session_state.answers['useful_assets']['ibm_software'] = st_tags(label='Enter IBM Software:', text='Press enter to add more', value=st.session_state.answers['useful_assets']['ibm_software'], suggestions=[], maxtags=5, key='ibm_software') | |
with col2: | |
st.session_state.answers['useful_assets']['open_source_supports'] = st_tags(label='Enter Open Source Supports:', text='Press enter to add more', value=st.session_state.answers['useful_assets']['open_source_supports'], suggestions=[], maxtags=5, key='open_source_supports') | |
elif current_page['input_key'] == 'pilot_evaluation': | |
st.subheader("Evaluation Criteria") | |
col1, col2 = st.columns(2) | |
with col1: | |
qualitative_criteria = st_tags(label='Enter Qualitative Criteria:', text='Press enter to add more', value=st.session_state.answers['useful_assets'].get('qualitative', []), suggestions=[], maxtags=5, key='qualitative_criteria') | |
st.session_state.answers['useful_assets']['qualitative'] = qualitative_criteria | |
# Add description fields for each qualitative criterion | |
for i, criterion in enumerate(qualitative_criteria): | |
description_key = f'qual_desc_{i}' | |
description = st.text_area(f"Description for {criterion}:", value=st.session_state.answers['useful_assets'].get(description_key, ""), key=description_key, height=100) | |
st.session_state.answers['useful_assets'][description_key] = description | |
with col2: | |
quantitative_criteria = st_tags(label='Enter Quantitative Criteria:', text='Use format: CriteriaName[min - max] (can use %, floats, or integers)', value=st.session_state.answers['useful_assets'].get('quantitative', []), suggestions=[], maxtags=5, key='quantitative_criteria') | |
st.session_state.answers['useful_assets']['quantitative'] = quantitative_criteria | |
if quantitative_criteria: | |
slider_cols = st.columns(len(quantitative_criteria)) | |
for i, (criterion, slider_col) in enumerate(zip(quantitative_criteria, slider_cols)): | |
parsed = pdf_generator.parse_quantitative_criteria(criterion) | |
if parsed: | |
name, min_val, max_val, is_percentage, is_integer = parsed | |
current_value = st.session_state.answers['useful_assets'].get(f'quant_value_{i}', min_val) | |
with slider_col: | |
value = vertical_slider(label=name, key=f"quant_slider_{i}", min_value=min_val, max_value=max_val, step=(max_val - min_val) / 100, default_value=current_value, height=200, thumb_shape="circle", thumb_color="#9999FF", slider_color=('green', 'orange'), value_always_visible=True) | |
st.session_state.answers['useful_assets'][f'quant_value_{i}'] = value | |
if is_percentage: | |
st.markdown(f"**{name}: {value:.1f}%**") | |
# st.markdown(f"**{name}: {value*100:.1f}%**") | |
elif is_integer: | |
st.markdown(f"**{name}: {int(value)}**") | |
else: | |
st.markdown(f"**{name}: {value:.2f}**") | |
else: | |
st.warning(f"Invalid format for quantitative criterion: {criterion}") | |
# Generate PDF button (only on the last page) | |
if st.session_state.current_page == len(pages) - 1: | |
if st.button("Generate and Download PDF", use_container_width=True): | |
pdf = pdf_generator.generate_pdf(st.session_state) | |
st.download_button(label="Download PDF", data=pdf, file_name="Pilot_Drafting.pdf", mime="application/pdf", use_container_width=True) | |
# Display progress | |
st.progress((st.session_state.current_page + 1) / len(pages)) | |
st.divider() |