Spaces:
Sleeping
Sleeping
File size: 5,589 Bytes
bcee819 6047652 bcee819 6047652 bcee819 efd893d bcee819 efd893d bcee819 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import streamlit as st
from io import BytesIO
import ibm_watsonx_ai
import secretsload
import genparam
import requests
import time
import re
from ibm_watsonx_ai.foundation_models import ModelInference
from ibm_watsonx_ai import Credentials, APIClient
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
from ibm_watsonx_ai.metanames import GenTextReturnOptMetaNames as RetParams
from secretsload import load_stsecrets
credentials = load_stsecrets()
st.set_page_config(
page_title="Jimmy",
page_icon="π",
initial_sidebar_state="collapsed"
)
# Password protection
def check_password():
def password_entered():
if st.session_state["password"] == st.secrets["app_password"]:
st.session_state["password_correct"] = True
del st.session_state["password"]
else:
st.session_state["password_correct"] = False
if "password_correct" not in st.session_state:
st.markdown("\n\n")
st.text_input("Enter the password", type="password", on_change=password_entered, key="password")
st.divider()
st.info("Developed by Milan Mrdenovic Β© IBM Norway 2024")
return False
elif not st.session_state["password_correct"]:
st.markdown("\n\n")
st.text_input("Enter the password", type="password", on_change=password_entered, key="password")
st.divider()
st.info("Developed by Milan Mrdenovic Β© IBM Norway 2024")
st.error("π Password incorrect")
return False
else:
return True
if not check_password():
st.stop()
# Initialize session state
if 'current_page' not in st.session_state:
st.session_state.current_page = 0
def initialize_session_state():
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
def setup_client():
credentials = Credentials(
url=st.secrets["url"],
api_key=st.secrets["api_key"]
)
return APIClient(credentials, project_id=st.secrets["project_id"])
def prepare_prompt(prompt, chat_history):
if genparam.TYPE == "chat" and chat_history:
chats = "\n".join([f"{message['role']}: \"{message['content']}\"" for message in chat_history])
return f"Conversation History:\n{chats}\n\nNew Message: {prompt}"
return prompt
def apply_prompt_syntax(prompt, system_prompt, prompt_template, bake_in_prompt_syntax):
model_family_syntax = {
"llama3-instruct (llama-3 & 3.1) - system": """\n<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""",
"llama3-instruct (llama-3 & 3.1) - user": """\n<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""",
"granite-13b-chat & instruct - system": """\n<|system|>\n{system_prompt}\n<|user|>\n{prompt}\n<|assistant|>\n\n""",
"granite-13b-chat & instruct - user": """\n<|user|>\n{prompt}\n<|assistant|>\n\n""",
"llama2-chat - system": """\n[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n{prompt} [/INST] """,
"llama2-chat - user": """\n[INST] {prompt} [/INST] """,
"mistral & mixtral v2 tokenizer - system": """\n<s>[INST] System Prompt:[{system_prompt}]\n\n{prompt} [/INST] """,
"mistral & mixtral v2 tokenizer - user": """\n<s>[INST] {prompt} [/INST] """
}
if bake_in_prompt_syntax:
template = model_family_syntax[prompt_template]
if system_prompt:
return template.format(system_prompt=system_prompt, prompt=prompt)
return prompt
def generate_response(watsonx_llm, prompt_data, params):
generated_response = watsonx_llm.generate_text_stream(prompt=prompt_data, params=params)
for chunk in generated_response:
yield chunk
def chat_interface():
st.title("Jimmy")
# User input
user_input = st.chat_input("You:", key="user_input")
if user_input:
# Add user message to chat history
st.session_state.chat_history.append({"role": "user", "content": user_input, avatar="π€"})
# Prepare the prompt
prompt = prepare_prompt(user_input, st.session_state.chat_history)
# Apply prompt syntax
prompt_data = apply_prompt_syntax(
prompt,
genparam.SYSTEM_PROMPT,
genparam.PROMPT_TEMPLATE,
genparam.BAKE_IN_PROMPT_SYNTAX
)
# Setup client and model
client = setup_client()
watsonx_llm = ModelInference(
api_client=client,
model_id=genparam.SELECTED_MODEL,
verify=genparam.VERIFY
)
# Prepare parameters
params = {
GenParams.DECODING_METHOD: genparam.DECODING_METHOD,
GenParams.MAX_NEW_TOKENS: genparam.MAX_NEW_TOKENS,
GenParams.MIN_NEW_TOKENS: genparam.MIN_NEW_TOKENS,
GenParams.REPETITION_PENALTY: genparam.REPETITION_PENALTY,
GenParams.STOP_SEQUENCES: genparam.STOP_SEQUENCES
}
# Generate and stream response
with st.chat_message("Jimmy", avatar="π"):
stream = generate_response(watsonx_llm, prompt_data, params)
response = st.write_stream(stream)
# Add AI response to chat history
st.session_state.chat_history.append({"role": "Jimmy", "content": response, avatar="π"})
def main():
initialize_session_state()
chat_interface()
if __name__ == "__main__":
main() |