Spaces:
Sleeping
Sleeping
File size: 2,482 Bytes
0cc5de7 7ea2a9f 0cc5de7 089b974 0cc5de7 089b974 0cc5de7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
import streamlit as st
from transformers import pipeline
st.title("NLP pipeling")
def text_classificer():
text_classification = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
st.title("Text Classification")
text=st.text_input("Enter the text :")
if st.button("Classife"):
output=text_classification(text)
st.write(output[0]["label"])
def text_summarizer():
text_summary = pipeline("summarization", model="facebook/bart-large-cnn")
st.title("Text Summarizer")
text=st.text_input("Enter the text")
if st.button("summarised"):
st.write(text_summary(text)[0]['summary_text'])
def text_generator():
text_generat= pipeline("text-generation")
st.title("Text Generation")
text=st.text_input("Enter the text")
if st.button("generate"):
result=text_generat(text)
st.write(result[0]["generated_text"])
def name_enity():
name_enity=pipeline("ner")#, model="dbmdz/bert-large-cased-finetuned-conll03-english", grouped_entities=True)
st.title("Name Enity")
text=st.text_input("Enter the text")
if st.button("submit"):
st.write(name_enity(text)[0]["word"])
def question_answer():
question_answering = pipeline("question-answering", model="google-bert/bert-large-uncased-whole-word-masking-finetuned-squad")
st.title("Question & Answers")
content=st.text_input("Enter the Content")
ques=st.text_input("Enter the Question ")
if st.button("submit"):
result=question_answering({"question": ques,"context": content})
st.write(result["answer"])
def code_generator():
st.title("Code Generator")
code_generation = pipeline("text-generation", model="Salesforce/codegen-350M-mono")
text=st.text_input("Enter the text")
if st.button("submit"):
st.write(code_generation(text)[0]) #["generated_text"]
file_type=st.sidebar.radio("Select a page:",('Text Classification',"Text Summarizer","Text Generator",'Name Enity','Question-Answer'))# Code Generator"
if file_type=='Text Classification':
text_classificer()
elif file_type=="Text Summarizer":
text_summarizer()
elif file_type=="Text Generator":
text_generator()
elif file_type=='Name Enity':
name_enity()
elif file_type=='Question-Answer':
question_answer()
# elif file_type=="Code Generator":
# code_generator()
else:
st.write(file_type)
|