Multichem commited on
Commit
5775817
·
verified ·
1 Parent(s): 685fb7a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +243 -0
app.py ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import streamlit as st
4
+ import gspread
5
+ import plotly.figure_factory as ff
6
+ from itertools import combinations
7
+
8
+ scope = ['https://www.googleapis.com/auth/spreadsheets',
9
+ "https://www.googleapis.com/auth/drive"]
10
+
11
+ credentials = {
12
+ "type": "service_account",
13
+ "project_id": "sheets-api-connect-378620",
14
+ "private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
15
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
16
+ "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
17
+ "client_id": "106625872877651920064",
18
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
19
+ "token_uri": "https://oauth2.googleapis.com/token",
20
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
21
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
22
+ }
23
+
24
+ gc = gspread.service_account_from_dict(credentials)
25
+
26
+ st.set_page_config(layout="wide")
27
+
28
+ master_hold = 'https://docs.google.com/spreadsheets/d/15flX6E7lPxu_HC7IOHpB3VEg2Am1AmtxTo9c2y_I-Mw/edit?gid=676575006#gid=676575006'
29
+
30
+ @st.cache_resource(ttl = 300)
31
+ def init_baselines():
32
+ sh = gc.open_by_url(master_hold)
33
+ worksheet = sh.worksheet('ADPs (model)')
34
+ adp_hold = pd.DataFrame(worksheet.get_all_records())
35
+ adp_hold = adp_hold[['Player', 'Team', 'Bye', 'Position', 'Position Rank', 'Underdog', 'MFL10', 'RTSPORTS', 'AVG', '2023 Proj', 'Proj ADP', 'Diff']]
36
+ adp_table = adp_hold.drop_duplicates(subset='Player')
37
+
38
+ worksheet = sh.worksheet('Stacks (model)')
39
+ stacks_hold = pd.DataFrame(worksheet.get_all_records())
40
+ stacks_table = stacks_hold.drop_duplicates(subset='Team')
41
+
42
+ worksheet = sh.worksheet('Player Level Projections')
43
+ proj_hold = pd.DataFrame(worksheet.get_all_records())
44
+ proj_table = proj_hold[['Player', 'Team', 'Pos', 'Pass', 'PassTD', 'Rush', 'RushTD', 'Receptions', 'Rec Yards', 'RecTD', 'Proj']]
45
+
46
+ return adp_table, stacks_table, proj_table
47
+
48
+ adp_table, stacks_table, proj_table = init_baselines()
49
+
50
+ # tab1, tab2, tab3 = st.tabs(["ADPs and Ranks", "Team Projections", "Stack Tool", "Player Prop Simulations", "Stat Specific Simulations", "Bet Sheet"])
51
+
52
+ def convert_df_to_csv(df):
53
+ return df.to_csv().encode('utf-8')
54
+
55
+ col1, col2 = st.columns([1, 5])
56
+
57
+ with col1:
58
+ if st.button("Load/Reset Data", key='reset4'):
59
+ st.cache_data.clear()
60
+ adp_table, stacks_table, proj_table = init_baselines()
61
+ site_var2 = st.radio("What site are you playing?", ('Underdog', 'MFL10'), key='site_var2')
62
+ split_var2 = st.radio("Would you like to run stack analysis for the full slate or individual teams?", ('All Teams', 'Specific Teams'), key='split_var2')
63
+ if split_var2 == 'Specific Teams':
64
+ team_var2 = st.multiselect('Which teams would you like to include in the analysis?', options = adp_table['Team'].unique(), key='team_var2')
65
+ elif split_var2 == 'All Teams':
66
+ team_var2 = adp_table.Team.unique().tolist()
67
+ pos_split2 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split2')
68
+ if pos_split2 == 'Specific Positions':
69
+ pos_var2 = st.multiselect('What Positions would you like to view?', options = ['QB', 'RB', 'WR', 'TE'])
70
+ elif pos_split2 == 'All Positions':
71
+ pos_var2 = 'All'
72
+ if site_var2 == 'Underdog':
73
+ adp_dict = dict(zip(adp_table.Player, adp_table.Underdog))
74
+ elif site_var2 == 'MFL10':
75
+ adp_dict = dict(zip(adp_table.Player, adp_table.MFL10))
76
+ size_var2 = st.number_input('What size of stacks are you analyzing?', min_value = 3, max_value = 6, step=1)
77
+ stack_size = size_var2
78
+
79
+ team_dict = dict(zip(adp_table.Player, adp_table.Team))
80
+ proj_dict = dict(zip(adp_table.Player, adp_table.Median))
81
+ diff_dict = dict(zip(adp_table.Player, adp_table.Diff))
82
+
83
+ with col2:
84
+ stack_hold_container = st.empty()
85
+ if st.button('Run stack analysis'):
86
+ comb_list = []
87
+ if pos_split2 == 'All Positions':
88
+ slate_teams = adp_table['Team'].values.tolist()
89
+ raw_baselines = adp_table.copy()
90
+ elif pos_split2 != 'All Positions':
91
+ slate_teams = adp_table['Team'].values.tolist()
92
+ raw_baselines = adp_table[adp_table['Position'].str.contains('|'.join(pos_var2))]
93
+
94
+ for cur_team in team_var2:
95
+ working_baselines = raw_baselines
96
+ working_baselines = working_baselines[working_baselines['Team'] == cur_team]
97
+ order_list = working_baselines['Player']
98
+
99
+ comb = combinations(order_list, stack_size)
100
+
101
+ for i in list(comb):
102
+ comb_list.append(i)
103
+
104
+ comb_DF = pd.DataFrame(comb_list)
105
+
106
+ if stack_size == 3:
107
+ comb_DF['Team'] = comb_DF[0].map(team_dict)
108
+
109
+ comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
110
+ comb_DF[1].map(proj_dict),
111
+ comb_DF[2].map(proj_dict)])
112
+
113
+ comb_DF['ADPs'] = str(comb_DF[0].map(adp_dict)) + ', ' + str(comb_DF[1].map(adp_dict)) + ', ' + str(comb_DF[2].map(adp_dict))
114
+
115
+ comb_DF['Value'] = sum([comb_DF[0].map(diff_dict),
116
+ comb_DF[1].map(diff_dict),
117
+ comb_DF[2].map(diff_dict)]) * -1
118
+
119
+ elif stack_size == 4:
120
+ comb_DF['Team'] = comb_DF[0].map(team_dict)
121
+
122
+ comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
123
+ comb_DF[1].map(proj_dict),
124
+ comb_DF[2].map(proj_dict),
125
+ comb_DF[3].map(proj_dict)])
126
+
127
+ comb_DF['ADPs'] = str(comb_DF[0].map(adp_dict)) + ', ' + str(comb_DF[1].map(adp_dict)) + ', ' + str(comb_DF[2].map(adp_dict)) + ', ' + str(comb_DF[3].map(adp_dict))
128
+
129
+ comb_DF['Value'] = sum([comb_DF[0].map(diff_dict),
130
+ comb_DF[1].map(diff_dict),
131
+ comb_DF[2].map(diff_dict),
132
+ comb_DF[3].map(diff_dict)]) * -1
133
+
134
+ elif stack_size == 5:
135
+ comb_DF['Team'] = comb_DF[0].map(team_dict)
136
+
137
+ comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
138
+ comb_DF[1].map(proj_dict),
139
+ comb_DF[2].map(proj_dict),
140
+ comb_DF[3].map(proj_dict),
141
+ comb_DF[4].map(proj_dict)])
142
+
143
+ comb_DF['ADPs'] = str(comb_DF[0].map(adp_dict)) + ', ' + str(comb_DF[1].map(adp_dict)) + ', ' + str(comb_DF[2].map(adp_dict)) + ', ' + str(comb_DF[3].map(adp_dict)) + ', ' + str(comb_DF[4].map(adp_dict))
144
+
145
+ comb_DF['Value'] = sum([comb_DF[0].map(diff_dict),
146
+ comb_DF[1].map(diff_dict),
147
+ comb_DF[2].map(diff_dict),
148
+ comb_DF[3].map(diff_dict),
149
+ comb_DF[4].map(diff_dict)]) * -1
150
+
151
+ elif stack_size == 6:
152
+ comb_DF['Team'] = comb_DF[0].map(team_dict)
153
+
154
+ comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
155
+ comb_DF[1].map(proj_dict),
156
+ comb_DF[2].map(proj_dict),
157
+ comb_DF[3].map(proj_dict),
158
+ comb_DF[4].map(proj_dict),
159
+ comb_DF[5].map(proj_dict)])
160
+
161
+ comb_DF['ADPs'] = str(comb_DF[0].map(adp_dict)) + ', ' + str(comb_DF[1].map(adp_dict)) + ', ' + str(comb_DF[2].map(adp_dict)) + ', ' + str(comb_DF[3].map(adp_dict)) + ', ' + str(comb_DF[4].map(adp_dict)) + ', ' + str(comb_DF[5].map(adp_dict))
162
+
163
+ comb_DF['Value'] = sum([comb_DF[0].map(diff_dict),
164
+ comb_DF[1].map(diff_dict),
165
+ comb_DF[2].map(diff_dict),
166
+ comb_DF[3].map(diff_dict),
167
+ comb_DF[4].map(diff_dict),
168
+ comb_DF[5].map(diff_dict)]) * -1
169
+
170
+ comb_DF = comb_DF.sort_values(by='Proj', ascending=False)
171
+
172
+ # cut_var = 0
173
+
174
+ # if stack_size == 3:
175
+ # while cut_var <= int(len(comb_DF)):
176
+ # try:
177
+ # if int(cut_var) == 0:
178
+ # cur_proj = float(comb_DF.iat[cut_var,4])
179
+ # cur_own = float(comb_DF.iat[cut_var,6])
180
+ # elif int(cut_var) >= 1:
181
+ # check_own = float(comb_DF.iat[cut_var,6])
182
+ # if check_own > cur_own:
183
+ # comb_DF = comb_DF.drop([cut_var])
184
+ # cur_own = cur_own
185
+ # cut_var = cut_var - 1
186
+ # comb_DF = comb_DF.reset_index()
187
+ # comb_DF = comb_DF.drop(['index'], axis=1)
188
+ # elif check_own <= cur_own:
189
+ # cur_own = float(comb_DF.iat[cut_var,6])
190
+ # cut_var = cut_var
191
+ # cut_var += 1
192
+ # except:
193
+ # cut_var += 1
194
+ # elif stack_size == 4:
195
+ # while cut_var <= int(len(comb_DF)):
196
+ # try:
197
+ # if int(cut_var) == 0:
198
+ # cur_proj = float(comb_DF.iat[cut_var,5])
199
+ # cur_own = float(comb_DF.iat[cut_var,7])
200
+ # elif int(cut_var) >= 1:
201
+ # check_own = float(comb_DF.iat[cut_var,7])
202
+ # if check_own > cur_own:
203
+ # comb_DF = comb_DF.drop([cut_var])
204
+ # cur_own = cur_own
205
+ # cut_var = cut_var - 1
206
+ # comb_DF = comb_DF.reset_index()
207
+ # comb_DF = comb_DF.drop(['index'], axis=1)
208
+ # elif check_own <= cur_own:
209
+ # cur_own = float(comb_DF.iat[cut_var,7])
210
+ # cut_var = cut_var
211
+ # cut_var += 1
212
+ # except:
213
+ # cut_var += 1
214
+ # elif stack_size == 5:
215
+ # while cut_var <= int(len(comb_DF)):
216
+ # try:
217
+ # if int(cut_var) == 0:
218
+ # cur_proj = float(comb_DF.iat[cut_var,6])
219
+ # cur_own = float(comb_DF.iat[cut_var,8])
220
+ # elif int(cut_var) >= 1:
221
+ # check_own = float(comb_DF.iat[cut_var,8])
222
+ # if check_own > cur_own:
223
+ # comb_DF = comb_DF.drop([cut_var])
224
+ # cur_own = cur_own
225
+ # cut_var = cut_var - 1
226
+ # comb_DF = comb_DF.reset_index()
227
+ # comb_DF = comb_DF.drop(['index'], axis=1)
228
+ # elif check_own <= cur_own:
229
+ # cur_own = float(comb_DF.iat[cut_var,8])
230
+ # cut_var = cut_var
231
+ # cut_var += 1
232
+ # except:
233
+ # cut_var += 1
234
+
235
+ with stack_hold_container:
236
+ stack_hold_container = st.empty()
237
+ st.dataframe(comb_DF.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
238
+ st.download_button(
239
+ label="Export Tables",
240
+ data=convert_df_to_csv(comb_DF),
241
+ file_name='NFL_Stack_Options_export.csv',
242
+ mime='text/csv',
243
+ )