Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import streamlit as st
|
4 |
+
import gspread
|
5 |
+
import plotly.figure_factory as ff
|
6 |
+
from itertools import combinations
|
7 |
+
|
8 |
+
scope = ['https://www.googleapis.com/auth/spreadsheets',
|
9 |
+
"https://www.googleapis.com/auth/drive"]
|
10 |
+
|
11 |
+
credentials = {
|
12 |
+
"type": "service_account",
|
13 |
+
"project_id": "sheets-api-connect-378620",
|
14 |
+
"private_key_id": "1005124050c80d085e2c5b344345715978dd9cc9",
|
15 |
+
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
|
16 |
+
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
|
17 |
+
"client_id": "106625872877651920064",
|
18 |
+
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
19 |
+
"token_uri": "https://oauth2.googleapis.com/token",
|
20 |
+
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
21 |
+
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
|
22 |
+
}
|
23 |
+
|
24 |
+
gc = gspread.service_account_from_dict(credentials)
|
25 |
+
|
26 |
+
st.set_page_config(layout="wide")
|
27 |
+
|
28 |
+
master_hold = 'https://docs.google.com/spreadsheets/d/15flX6E7lPxu_HC7IOHpB3VEg2Am1AmtxTo9c2y_I-Mw/edit?gid=676575006#gid=676575006'
|
29 |
+
|
30 |
+
@st.cache_resource(ttl = 300)
|
31 |
+
def init_baselines():
|
32 |
+
sh = gc.open_by_url(master_hold)
|
33 |
+
worksheet = sh.worksheet('ADPs (model)')
|
34 |
+
adp_hold = pd.DataFrame(worksheet.get_all_records())
|
35 |
+
adp_hold = adp_hold[['Player', 'Team', 'Bye', 'Position', 'Position Rank', 'Underdog', 'MFL10', 'RTSPORTS', 'AVG', '2023 Proj', 'Proj ADP', 'Diff']]
|
36 |
+
adp_table = adp_hold.drop_duplicates(subset='Player')
|
37 |
+
|
38 |
+
worksheet = sh.worksheet('Stacks (model)')
|
39 |
+
stacks_hold = pd.DataFrame(worksheet.get_all_records())
|
40 |
+
stacks_table = stacks_hold.drop_duplicates(subset='Team')
|
41 |
+
|
42 |
+
worksheet = sh.worksheet('Player Level Projections')
|
43 |
+
proj_hold = pd.DataFrame(worksheet.get_all_records())
|
44 |
+
proj_table = proj_hold[['Player', 'Team', 'Pos', 'Pass', 'PassTD', 'Rush', 'RushTD', 'Receptions', 'Rec Yards', 'RecTD', 'Proj']]
|
45 |
+
|
46 |
+
return adp_table, stacks_table, proj_table
|
47 |
+
|
48 |
+
adp_table, stacks_table, proj_table = init_baselines()
|
49 |
+
|
50 |
+
# tab1, tab2, tab3 = st.tabs(["ADPs and Ranks", "Team Projections", "Stack Tool", "Player Prop Simulations", "Stat Specific Simulations", "Bet Sheet"])
|
51 |
+
|
52 |
+
def convert_df_to_csv(df):
|
53 |
+
return df.to_csv().encode('utf-8')
|
54 |
+
|
55 |
+
col1, col2 = st.columns([1, 5])
|
56 |
+
|
57 |
+
with col1:
|
58 |
+
if st.button("Load/Reset Data", key='reset4'):
|
59 |
+
st.cache_data.clear()
|
60 |
+
adp_table, stacks_table, proj_table = init_baselines()
|
61 |
+
site_var2 = st.radio("What site are you playing?", ('Underdog', 'MFL10'), key='site_var2')
|
62 |
+
split_var2 = st.radio("Would you like to run stack analysis for the full slate or individual teams?", ('All Teams', 'Specific Teams'), key='split_var2')
|
63 |
+
if split_var2 == 'Specific Teams':
|
64 |
+
team_var2 = st.multiselect('Which teams would you like to include in the analysis?', options = adp_table['Team'].unique(), key='team_var2')
|
65 |
+
elif split_var2 == 'All Teams':
|
66 |
+
team_var2 = adp_table.Team.unique().tolist()
|
67 |
+
pos_split2 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split2')
|
68 |
+
if pos_split2 == 'Specific Positions':
|
69 |
+
pos_var2 = st.multiselect('What Positions would you like to view?', options = ['QB', 'RB', 'WR', 'TE'])
|
70 |
+
elif pos_split2 == 'All Positions':
|
71 |
+
pos_var2 = 'All'
|
72 |
+
if site_var2 == 'Underdog':
|
73 |
+
adp_dict = dict(zip(adp_table.Player, adp_table.Underdog))
|
74 |
+
elif site_var2 == 'MFL10':
|
75 |
+
adp_dict = dict(zip(adp_table.Player, adp_table.MFL10))
|
76 |
+
size_var2 = st.number_input('What size of stacks are you analyzing?', min_value = 3, max_value = 6, step=1)
|
77 |
+
stack_size = size_var2
|
78 |
+
|
79 |
+
team_dict = dict(zip(adp_table.Player, adp_table.Team))
|
80 |
+
proj_dict = dict(zip(adp_table.Player, adp_table.Median))
|
81 |
+
diff_dict = dict(zip(adp_table.Player, adp_table.Diff))
|
82 |
+
|
83 |
+
with col2:
|
84 |
+
stack_hold_container = st.empty()
|
85 |
+
if st.button('Run stack analysis'):
|
86 |
+
comb_list = []
|
87 |
+
if pos_split2 == 'All Positions':
|
88 |
+
slate_teams = adp_table['Team'].values.tolist()
|
89 |
+
raw_baselines = adp_table.copy()
|
90 |
+
elif pos_split2 != 'All Positions':
|
91 |
+
slate_teams = adp_table['Team'].values.tolist()
|
92 |
+
raw_baselines = adp_table[adp_table['Position'].str.contains('|'.join(pos_var2))]
|
93 |
+
|
94 |
+
for cur_team in team_var2:
|
95 |
+
working_baselines = raw_baselines
|
96 |
+
working_baselines = working_baselines[working_baselines['Team'] == cur_team]
|
97 |
+
order_list = working_baselines['Player']
|
98 |
+
|
99 |
+
comb = combinations(order_list, stack_size)
|
100 |
+
|
101 |
+
for i in list(comb):
|
102 |
+
comb_list.append(i)
|
103 |
+
|
104 |
+
comb_DF = pd.DataFrame(comb_list)
|
105 |
+
|
106 |
+
if stack_size == 3:
|
107 |
+
comb_DF['Team'] = comb_DF[0].map(team_dict)
|
108 |
+
|
109 |
+
comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
|
110 |
+
comb_DF[1].map(proj_dict),
|
111 |
+
comb_DF[2].map(proj_dict)])
|
112 |
+
|
113 |
+
comb_DF['ADPs'] = str(comb_DF[0].map(adp_dict)) + ', ' + str(comb_DF[1].map(adp_dict)) + ', ' + str(comb_DF[2].map(adp_dict))
|
114 |
+
|
115 |
+
comb_DF['Value'] = sum([comb_DF[0].map(diff_dict),
|
116 |
+
comb_DF[1].map(diff_dict),
|
117 |
+
comb_DF[2].map(diff_dict)]) * -1
|
118 |
+
|
119 |
+
elif stack_size == 4:
|
120 |
+
comb_DF['Team'] = comb_DF[0].map(team_dict)
|
121 |
+
|
122 |
+
comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
|
123 |
+
comb_DF[1].map(proj_dict),
|
124 |
+
comb_DF[2].map(proj_dict),
|
125 |
+
comb_DF[3].map(proj_dict)])
|
126 |
+
|
127 |
+
comb_DF['ADPs'] = str(comb_DF[0].map(adp_dict)) + ', ' + str(comb_DF[1].map(adp_dict)) + ', ' + str(comb_DF[2].map(adp_dict)) + ', ' + str(comb_DF[3].map(adp_dict))
|
128 |
+
|
129 |
+
comb_DF['Value'] = sum([comb_DF[0].map(diff_dict),
|
130 |
+
comb_DF[1].map(diff_dict),
|
131 |
+
comb_DF[2].map(diff_dict),
|
132 |
+
comb_DF[3].map(diff_dict)]) * -1
|
133 |
+
|
134 |
+
elif stack_size == 5:
|
135 |
+
comb_DF['Team'] = comb_DF[0].map(team_dict)
|
136 |
+
|
137 |
+
comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
|
138 |
+
comb_DF[1].map(proj_dict),
|
139 |
+
comb_DF[2].map(proj_dict),
|
140 |
+
comb_DF[3].map(proj_dict),
|
141 |
+
comb_DF[4].map(proj_dict)])
|
142 |
+
|
143 |
+
comb_DF['ADPs'] = str(comb_DF[0].map(adp_dict)) + ', ' + str(comb_DF[1].map(adp_dict)) + ', ' + str(comb_DF[2].map(adp_dict)) + ', ' + str(comb_DF[3].map(adp_dict)) + ', ' + str(comb_DF[4].map(adp_dict))
|
144 |
+
|
145 |
+
comb_DF['Value'] = sum([comb_DF[0].map(diff_dict),
|
146 |
+
comb_DF[1].map(diff_dict),
|
147 |
+
comb_DF[2].map(diff_dict),
|
148 |
+
comb_DF[3].map(diff_dict),
|
149 |
+
comb_DF[4].map(diff_dict)]) * -1
|
150 |
+
|
151 |
+
elif stack_size == 6:
|
152 |
+
comb_DF['Team'] = comb_DF[0].map(team_dict)
|
153 |
+
|
154 |
+
comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
|
155 |
+
comb_DF[1].map(proj_dict),
|
156 |
+
comb_DF[2].map(proj_dict),
|
157 |
+
comb_DF[3].map(proj_dict),
|
158 |
+
comb_DF[4].map(proj_dict),
|
159 |
+
comb_DF[5].map(proj_dict)])
|
160 |
+
|
161 |
+
comb_DF['ADPs'] = str(comb_DF[0].map(adp_dict)) + ', ' + str(comb_DF[1].map(adp_dict)) + ', ' + str(comb_DF[2].map(adp_dict)) + ', ' + str(comb_DF[3].map(adp_dict)) + ', ' + str(comb_DF[4].map(adp_dict)) + ', ' + str(comb_DF[5].map(adp_dict))
|
162 |
+
|
163 |
+
comb_DF['Value'] = sum([comb_DF[0].map(diff_dict),
|
164 |
+
comb_DF[1].map(diff_dict),
|
165 |
+
comb_DF[2].map(diff_dict),
|
166 |
+
comb_DF[3].map(diff_dict),
|
167 |
+
comb_DF[4].map(diff_dict),
|
168 |
+
comb_DF[5].map(diff_dict)]) * -1
|
169 |
+
|
170 |
+
comb_DF = comb_DF.sort_values(by='Proj', ascending=False)
|
171 |
+
|
172 |
+
# cut_var = 0
|
173 |
+
|
174 |
+
# if stack_size == 3:
|
175 |
+
# while cut_var <= int(len(comb_DF)):
|
176 |
+
# try:
|
177 |
+
# if int(cut_var) == 0:
|
178 |
+
# cur_proj = float(comb_DF.iat[cut_var,4])
|
179 |
+
# cur_own = float(comb_DF.iat[cut_var,6])
|
180 |
+
# elif int(cut_var) >= 1:
|
181 |
+
# check_own = float(comb_DF.iat[cut_var,6])
|
182 |
+
# if check_own > cur_own:
|
183 |
+
# comb_DF = comb_DF.drop([cut_var])
|
184 |
+
# cur_own = cur_own
|
185 |
+
# cut_var = cut_var - 1
|
186 |
+
# comb_DF = comb_DF.reset_index()
|
187 |
+
# comb_DF = comb_DF.drop(['index'], axis=1)
|
188 |
+
# elif check_own <= cur_own:
|
189 |
+
# cur_own = float(comb_DF.iat[cut_var,6])
|
190 |
+
# cut_var = cut_var
|
191 |
+
# cut_var += 1
|
192 |
+
# except:
|
193 |
+
# cut_var += 1
|
194 |
+
# elif stack_size == 4:
|
195 |
+
# while cut_var <= int(len(comb_DF)):
|
196 |
+
# try:
|
197 |
+
# if int(cut_var) == 0:
|
198 |
+
# cur_proj = float(comb_DF.iat[cut_var,5])
|
199 |
+
# cur_own = float(comb_DF.iat[cut_var,7])
|
200 |
+
# elif int(cut_var) >= 1:
|
201 |
+
# check_own = float(comb_DF.iat[cut_var,7])
|
202 |
+
# if check_own > cur_own:
|
203 |
+
# comb_DF = comb_DF.drop([cut_var])
|
204 |
+
# cur_own = cur_own
|
205 |
+
# cut_var = cut_var - 1
|
206 |
+
# comb_DF = comb_DF.reset_index()
|
207 |
+
# comb_DF = comb_DF.drop(['index'], axis=1)
|
208 |
+
# elif check_own <= cur_own:
|
209 |
+
# cur_own = float(comb_DF.iat[cut_var,7])
|
210 |
+
# cut_var = cut_var
|
211 |
+
# cut_var += 1
|
212 |
+
# except:
|
213 |
+
# cut_var += 1
|
214 |
+
# elif stack_size == 5:
|
215 |
+
# while cut_var <= int(len(comb_DF)):
|
216 |
+
# try:
|
217 |
+
# if int(cut_var) == 0:
|
218 |
+
# cur_proj = float(comb_DF.iat[cut_var,6])
|
219 |
+
# cur_own = float(comb_DF.iat[cut_var,8])
|
220 |
+
# elif int(cut_var) >= 1:
|
221 |
+
# check_own = float(comb_DF.iat[cut_var,8])
|
222 |
+
# if check_own > cur_own:
|
223 |
+
# comb_DF = comb_DF.drop([cut_var])
|
224 |
+
# cur_own = cur_own
|
225 |
+
# cut_var = cut_var - 1
|
226 |
+
# comb_DF = comb_DF.reset_index()
|
227 |
+
# comb_DF = comb_DF.drop(['index'], axis=1)
|
228 |
+
# elif check_own <= cur_own:
|
229 |
+
# cur_own = float(comb_DF.iat[cut_var,8])
|
230 |
+
# cut_var = cut_var
|
231 |
+
# cut_var += 1
|
232 |
+
# except:
|
233 |
+
# cut_var += 1
|
234 |
+
|
235 |
+
with stack_hold_container:
|
236 |
+
stack_hold_container = st.empty()
|
237 |
+
st.dataframe(comb_DF.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
238 |
+
st.download_button(
|
239 |
+
label="Export Tables",
|
240 |
+
data=convert_df_to_csv(comb_DF),
|
241 |
+
file_name='NFL_Stack_Options_export.csv',
|
242 |
+
mime='text/csv',
|
243 |
+
)
|