Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -115,73 +115,17 @@ def convert_df_to_csv(df):
|
|
115 |
rb_search, wr_search, rb_season, wr_season, wr_matchups, macro_data, trending_data = pull_baselines()
|
116 |
pos_list = ['RB', 'WR', 'TE']
|
117 |
|
118 |
-
tab1, tab2 = st.tabs(["
|
119 |
with tab1:
|
120 |
col1, col2 = st.columns([1, 8])
|
121 |
|
122 |
-
with col1:
|
123 |
-
if st.button("Load/Reset Data", key='reset1'):
|
124 |
-
st.cache_data.clear()
|
125 |
-
rb_search, wr_search, rb_season, wr_season, wr_matchups, macro_data, trending_data = pull_baselines()
|
126 |
-
stat_type_var1 = st.radio("What table are you loading?", ('Macro Table', 'RB Usage (Weekly)', 'WR/TE Usage (Weekly)', 'RB Usage (Season)', 'WR/TE Usage (Season)'), key='stat_type_var1')
|
127 |
-
split_var1 = st.radio("Are you running the the whole league or certain teams?", ('All Teams', 'Specific Teams'), key='split_var1')
|
128 |
-
pos_split1 = st.radio("Are you viewing all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')
|
129 |
-
if pos_split1 == 'Specific Positions':
|
130 |
-
pos_var1 = st.multiselect('What Positions would you like to view?', options = ['RB', 'WR', 'TE'])
|
131 |
-
elif pos_split1 == 'All Positions':
|
132 |
-
pos_var1 = pos_list
|
133 |
-
if split_var1 == 'Specific Teams':
|
134 |
-
team_var1 = st.multiselect('Which teams would you like to include in the Table?', options = rb_search['Team-Season'].unique(), key='team_var1')
|
135 |
-
elif split_var1 == 'All Teams':
|
136 |
-
team_var1 = rb_search['Team-Season'].unique().tolist()
|
137 |
-
if stat_type_var1 == 'Macro Table':
|
138 |
-
table_instance = macro_data
|
139 |
-
table_instance = table_instance.set_index('Team')
|
140 |
-
elif stat_type_var1 == 'RB Usage (Weekly)':
|
141 |
-
table_instance = rb_search
|
142 |
-
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
|
143 |
-
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
|
144 |
-
elif stat_type_var1 == 'WR/TE Usage (Weekly)':
|
145 |
-
table_instance = wr_search
|
146 |
-
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
|
147 |
-
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
|
148 |
-
elif stat_type_var1 == 'RB Usage (Season)':
|
149 |
-
table_instance = rb_season
|
150 |
-
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
|
151 |
-
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
|
152 |
-
elif stat_type_var1 == 'WR/TE Usage (Season)':
|
153 |
-
table_instance = wr_season
|
154 |
-
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
|
155 |
-
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
|
156 |
-
|
157 |
-
with col2:
|
158 |
-
if stat_type_var1 == 'Macro Table':
|
159 |
-
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(game_format, precision=2), use_container_width = True)
|
160 |
-
elif stat_type_var1 == 'RB Usage (Weekly)':
|
161 |
-
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(rb_util, precision=2), use_container_width = True)
|
162 |
-
elif stat_type_var1 == 'WR/TE Usage (Weekly)':
|
163 |
-
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(wr_te_util, precision=2), use_container_width = True)
|
164 |
-
elif stat_type_var1 == 'RB Usage (Season)':
|
165 |
-
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(rb_util, precision=2), use_container_width = True)
|
166 |
-
elif stat_type_var1 == 'WR/TE Usage (Season)':
|
167 |
-
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(wr_te_util, precision=2), use_container_width = True)
|
168 |
-
|
169 |
-
st.download_button(
|
170 |
-
label="Export Tables",
|
171 |
-
data=convert_df_to_csv(table_instance),
|
172 |
-
file_name='NFL_Research_export.csv',
|
173 |
-
mime='text/csv',
|
174 |
-
)
|
175 |
-
with tab2:
|
176 |
-
col1, col2 = st.columns([1, 8])
|
177 |
-
|
178 |
with col1:
|
179 |
if st.button("Load/Reset Data", key='reset2'):
|
180 |
st.cache_data.clear()
|
181 |
rb_search, wr_search, rb_season, wr_season, wr_matchups, macro_data, trending_data = pull_baselines()
|
182 |
-
stat_type_var2 = st.radio("What table are you loading?", ('WR/TE Coverage Matchups', 'Ownership Trends', 'Nothing idk lol'))
|
183 |
if stat_type_var2 == 'WR/TE Coverage Matchups':
|
184 |
-
routes_var2 = st.slider("Is there a certain
|
185 |
split_var2 = st.radio("Are you running the the whole league or certain teams?", ('All Teams', 'Specific Teams'))
|
186 |
pos_split2 = st.radio("Are you viewing all positions or specific positions?", ('All Positions', 'Specific Positions'))
|
187 |
if pos_split2 == 'Specific Positions':
|
@@ -195,7 +139,10 @@ with tab2:
|
|
195 |
team_var2 = st.multiselect('Which teams would you like to include in the Table?', options = wr_matchups['Team'].unique())
|
196 |
elif split_var2 == 'All Teams':
|
197 |
team_var2 = wr_matchups['Team'].unique().tolist()
|
198 |
-
if stat_type_var2 == '
|
|
|
|
|
|
|
199 |
slate_table_instance = wr_matchups
|
200 |
slate_table_instance = slate_table_instance[slate_table_instance['Team'].isin(team_var2)]
|
201 |
slate_table_instance = slate_table_instance[slate_table_instance['Position'].isin(pos_var2)]
|
@@ -206,11 +153,13 @@ with tab2:
|
|
206 |
slate_table_instance = trending_data
|
207 |
slate_table_instance = slate_table_instance[slate_table_instance['Team'].isin(team_var2)]
|
208 |
slate_table_instance = slate_table_instance[slate_table_instance['Position'].isin(pos_var2)]
|
209 |
-
elif
|
210 |
slate_table_instance = wr_matchups
|
211 |
|
212 |
with col2:
|
213 |
-
if stat_type_var2 == '
|
|
|
|
|
214 |
st.dataframe(slate_table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(wr_matchups_form, precision=2), use_container_width = True)
|
215 |
elif stat_type_var2 == 'Ownership Trends':
|
216 |
st.dataframe(slate_table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(trending_form, precision=2), use_container_width = True)
|
@@ -222,4 +171,56 @@ with tab2:
|
|
222 |
data=convert_df_to_csv(slate_table_instance),
|
223 |
file_name='NFL_Slate_Research_export.csv',
|
224 |
mime='text/csv',
|
225 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
rb_search, wr_search, rb_season, wr_season, wr_matchups, macro_data, trending_data = pull_baselines()
|
116 |
pos_list = ['RB', 'WR', 'TE']
|
117 |
|
118 |
+
tab1, tab2 = st.tabs(["Slate Specific", "Season Long Research"])
|
119 |
with tab1:
|
120 |
col1, col2 = st.columns([1, 8])
|
121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
with col1:
|
123 |
if st.button("Load/Reset Data", key='reset2'):
|
124 |
st.cache_data.clear()
|
125 |
rb_search, wr_search, rb_season, wr_season, wr_matchups, macro_data, trending_data = pull_baselines()
|
126 |
+
stat_type_var2 = st.radio("What table are you loading?", ('Macro Stats', 'WR/TE Coverage Matchups', 'Ownership Trends', 'Nothing idk lol'))
|
127 |
if stat_type_var2 == 'WR/TE Coverage Matchups':
|
128 |
+
routes_var2 = st.slider("Is there a certain range of routes you want to include?", 0, 50, (10, 50), key='sal_var2')
|
129 |
split_var2 = st.radio("Are you running the the whole league or certain teams?", ('All Teams', 'Specific Teams'))
|
130 |
pos_split2 = st.radio("Are you viewing all positions or specific positions?", ('All Positions', 'Specific Positions'))
|
131 |
if pos_split2 == 'Specific Positions':
|
|
|
139 |
team_var2 = st.multiselect('Which teams would you like to include in the Table?', options = wr_matchups['Team'].unique())
|
140 |
elif split_var2 == 'All Teams':
|
141 |
team_var2 = wr_matchups['Team'].unique().tolist()
|
142 |
+
if stat_type_var2 == 'Macro Table':
|
143 |
+
slate_table_instance = macro_data
|
144 |
+
slate_table_instance = slate_table_instance.set_index('Team')
|
145 |
+
elif stat_type_var2 == 'WR/TE Coverage Matchups':
|
146 |
slate_table_instance = wr_matchups
|
147 |
slate_table_instance = slate_table_instance[slate_table_instance['Team'].isin(team_var2)]
|
148 |
slate_table_instance = slate_table_instance[slate_table_instance['Position'].isin(pos_var2)]
|
|
|
153 |
slate_table_instance = trending_data
|
154 |
slate_table_instance = slate_table_instance[slate_table_instance['Team'].isin(team_var2)]
|
155 |
slate_table_instance = slate_table_instance[slate_table_instance['Position'].isin(pos_var2)]
|
156 |
+
elif stat_type_var2 == 'Nothing idk lol':
|
157 |
slate_table_instance = wr_matchups
|
158 |
|
159 |
with col2:
|
160 |
+
if stat_type_var2 == 'Macro Table':
|
161 |
+
st.dataframe(slate_table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(game_format, precision=2), height=1000, use_container_width = True)
|
162 |
+
elif stat_type_var2 == 'WR/TE Coverage Matchups':
|
163 |
st.dataframe(slate_table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(wr_matchups_form, precision=2), use_container_width = True)
|
164 |
elif stat_type_var2 == 'Ownership Trends':
|
165 |
st.dataframe(slate_table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(trending_form, precision=2), use_container_width = True)
|
|
|
171 |
data=convert_df_to_csv(slate_table_instance),
|
172 |
file_name='NFL_Slate_Research_export.csv',
|
173 |
mime='text/csv',
|
174 |
+
)
|
175 |
+
|
176 |
+
with tab2:
|
177 |
+
col1, col2 = st.columns([1, 8])
|
178 |
+
|
179 |
+
with col1:
|
180 |
+
if st.button("Load/Reset Data", key='reset1'):
|
181 |
+
st.cache_data.clear()
|
182 |
+
rb_search, wr_search, rb_season, wr_season, wr_matchups, macro_data, trending_data = pull_baselines()
|
183 |
+
stat_type_var1 = st.radio("What table are you loading?", ('RB Usage (Weekly)', 'WR/TE Usage (Weekly)', 'RB Usage (Season)', 'WR/TE Usage (Season)'), key='stat_type_var1')
|
184 |
+
split_var1 = st.radio("Are you running the the whole league or certain teams?", ('All Teams', 'Specific Teams'), key='split_var1')
|
185 |
+
pos_split1 = st.radio("Are you viewing all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')
|
186 |
+
if pos_split1 == 'Specific Positions':
|
187 |
+
pos_var1 = st.multiselect('What Positions would you like to view?', options = ['RB', 'WR', 'TE'])
|
188 |
+
elif pos_split1 == 'All Positions':
|
189 |
+
pos_var1 = pos_list
|
190 |
+
if split_var1 == 'Specific Teams':
|
191 |
+
team_var1 = st.multiselect('Which teams would you like to include in the Table?', options = rb_search['Team-Season'].unique(), key='team_var1')
|
192 |
+
elif split_var1 == 'All Teams':
|
193 |
+
team_var1 = rb_search['Team-Season'].unique().tolist()
|
194 |
+
if stat_type_var1 == 'RB Usage (Weekly)':
|
195 |
+
table_instance = rb_search
|
196 |
+
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
|
197 |
+
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
|
198 |
+
elif stat_type_var1 == 'WR/TE Usage (Weekly)':
|
199 |
+
table_instance = wr_search
|
200 |
+
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
|
201 |
+
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
|
202 |
+
elif stat_type_var1 == 'RB Usage (Season)':
|
203 |
+
table_instance = rb_season
|
204 |
+
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
|
205 |
+
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
|
206 |
+
elif stat_type_var1 == 'WR/TE Usage (Season)':
|
207 |
+
table_instance = wr_season
|
208 |
+
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
|
209 |
+
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
|
210 |
+
|
211 |
+
with col2:
|
212 |
+
if stat_type_var1 == 'RB Usage (Weekly)':
|
213 |
+
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(rb_util, precision=2), height=1000, use_container_width = True)
|
214 |
+
elif stat_type_var1 == 'WR/TE Usage (Weekly)':
|
215 |
+
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(wr_te_util, precision=2), height=1000, use_container_width = True)
|
216 |
+
elif stat_type_var1 == 'RB Usage (Season)':
|
217 |
+
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(rb_util, precision=2), height=1000, use_container_width = True)
|
218 |
+
elif stat_type_var1 == 'WR/TE Usage (Season)':
|
219 |
+
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(wr_te_util, precision=2), height=1000, use_container_width = True)
|
220 |
+
|
221 |
+
st.download_button(
|
222 |
+
label="Export Tables",
|
223 |
+
data=convert_df_to_csv(table_instance),
|
224 |
+
file_name='NFL_Research_export.csv',
|
225 |
+
mime='text/csv',
|
226 |
+
)
|