Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -43,7 +43,7 @@ wr_te_util = {'Routes%': '{:.2%}','Targets%': '{:.2%}', 'Air Yards%': '{:.2%}',
|
|
43 |
all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=179416653'
|
44 |
|
45 |
@st.cache_resource(ttl = 300)
|
46 |
-
def
|
47 |
sh = gc.open_by_url(all_dk_player_projections)
|
48 |
worksheet = sh.worksheet('RB_Util')
|
49 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
@@ -56,7 +56,7 @@ def rb_util_season():
|
|
56 |
return raw_display
|
57 |
|
58 |
@st.cache_resource(ttl = 300)
|
59 |
-
def
|
60 |
sh = gc.open_by_url(all_dk_player_projections)
|
61 |
worksheet = sh.worksheet('WR_TE_Util')
|
62 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
@@ -68,6 +68,32 @@ def wr_te_util_season():
|
|
68 |
raw_display = raw_display.sort_values(by='Utilization Rank', ascending=True)
|
69 |
return raw_display
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
@st.cache_resource(ttl = 300)
|
72 |
def macro_pull():
|
73 |
sh = gc.open_by_url(all_dk_player_projections)
|
@@ -80,9 +106,10 @@ def macro_pull():
|
|
80 |
@st.cache_data
|
81 |
def convert_df_to_csv(df):
|
82 |
return df.to_csv().encode('utf-8')
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
86 |
macro_data = macro_pull()
|
87 |
pos_list = ['RB', 'WR', 'TE']
|
88 |
|
@@ -94,7 +121,7 @@ with col1:
|
|
94 |
rb_search = rb_util_season()
|
95 |
wr_search = wr_te_util_season()
|
96 |
macro_data = macro_pull()
|
97 |
-
stat_type_var1 = st.radio("What table are you loading?", ('Macro Table', 'RB Usage', 'WR/TE Usage'), key='stat_type_var1')
|
98 |
split_var1 = st.radio("Are you running the the whole league or certain teams?", ('All Teams', 'Specific Teams'), key='split_var1')
|
99 |
pos_split1 = st.radio("Are you viewing all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')
|
100 |
if pos_split1 == 'Specific Positions':
|
@@ -108,26 +135,38 @@ with col1:
|
|
108 |
if stat_type_var1 == 'Macro Table':
|
109 |
table_instance = macro_data
|
110 |
table_instance = table_instance.set_index('team')
|
111 |
-
elif stat_type_var1 == 'RB Usage':
|
112 |
table_instance = rb_search
|
113 |
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
|
114 |
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
|
115 |
-
elif stat_type_var1 == 'WR/TE Usage':
|
116 |
table_instance = wr_search
|
117 |
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
|
118 |
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
with col2:
|
121 |
if stat_type_var1 == 'Macro Table':
|
122 |
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(game_format, precision=2), use_container_width = True)
|
123 |
-
elif stat_type_var1 == 'RB Usage':
|
|
|
|
|
|
|
|
|
124 |
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(rb_util, precision=2), use_container_width = True)
|
125 |
-
elif stat_type_var1 == 'WR/TE Usage':
|
126 |
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(wr_te_util, precision=2), use_container_width = True)
|
127 |
|
128 |
st.download_button(
|
129 |
label="Export Tables",
|
130 |
data=convert_df_to_csv(table_instance),
|
131 |
-
file_name='
|
132 |
mime='text/csv',
|
133 |
)
|
|
|
43 |
all_dk_player_projections = 'https://docs.google.com/spreadsheets/d/1I_1Ve3F4tftgfLQQoRKOJ351XfEG48s36OxXUKxmgS8/edit#gid=179416653'
|
44 |
|
45 |
@st.cache_resource(ttl = 300)
|
46 |
+
def rb_util_weekly():
|
47 |
sh = gc.open_by_url(all_dk_player_projections)
|
48 |
worksheet = sh.worksheet('RB_Util')
|
49 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
|
|
56 |
return raw_display
|
57 |
|
58 |
@st.cache_resource(ttl = 300)
|
59 |
+
def wr_te_util_weekly():
|
60 |
sh = gc.open_by_url(all_dk_player_projections)
|
61 |
worksheet = sh.worksheet('WR_TE_Util')
|
62 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
|
|
68 |
raw_display = raw_display.sort_values(by='Utilization Rank', ascending=True)
|
69 |
return raw_display
|
70 |
|
71 |
+
@st.cache_resource(ttl = 300)
|
72 |
+
def rb_util_season():
|
73 |
+
sh = gc.open_by_url(all_dk_player_projections)
|
74 |
+
worksheet = sh.worksheet('RB_Util_Season')
|
75 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
76 |
+
raw_display = raw_display.replace('', np.nan)
|
77 |
+
raw_display = raw_display[['player_name', 'position', 'team_season', 'player_snaps_per', 'rush_attempts_per', 'routes_per', 'targets_per',
|
78 |
+
'tprr', 'player_SDD_snaps_per', 'inside_five_rush_per', 'player_LDD_snaps_per', 'two_min_per', 'exPPR', 'ppr_fantasy', 'UR_Rank']]
|
79 |
+
raw_display = raw_display.set_axis(['Player', 'Position', 'Week', 'Team-Season', 'Player Snaps%', 'Rush Att%', 'Routes%', 'Targets%',
|
80 |
+
'TPRR', 'SDD Snaps%', 'i5 Rush%', 'LDD Snaps%', '2-min%', 'Expected PPR', 'PPR', 'Utilization Rank'], axis='columns')
|
81 |
+
raw_display = raw_display.sort_values(by='Utilization Rank', ascending=True)
|
82 |
+
return raw_display
|
83 |
+
|
84 |
+
@st.cache_resource(ttl = 300)
|
85 |
+
def wr_te_util_season():
|
86 |
+
sh = gc.open_by_url(all_dk_player_projections)
|
87 |
+
worksheet = sh.worksheet('WR_TE_Util_Season')
|
88 |
+
raw_display = pd.DataFrame(worksheet.get_all_records())
|
89 |
+
raw_display = raw_display.replace('', np.nan)
|
90 |
+
raw_display = raw_display[['player_name', 'position', 'team_season', 'routes_per', 'targets_per', 'tprr' , 'adot', 'air_yards_per',
|
91 |
+
'ayprr', 'endzone_targets_per', 'third_fourth_per', 'third_fourth_target_per', 'play_action_targets_per', 'exPPR', 'ppr_fantasy', 'UR_Rank']]
|
92 |
+
raw_display = raw_display.set_axis(['Player', 'Position', 'Week', 'Team-Season', 'Routes%', 'Targets%', 'TPRR' , 'ADOT', 'Air Yards%',
|
93 |
+
'AYPRR', 'Endzone Targets%', 'Third/Fourth%', 'Third/Fourth Targets%', 'Play Action Targets%', 'Expected PPR', 'PPR', 'Utilization Rank'], axis='columns')
|
94 |
+
raw_display = raw_display.sort_values(by='Utilization Rank', ascending=True)
|
95 |
+
return raw_display
|
96 |
+
|
97 |
@st.cache_resource(ttl = 300)
|
98 |
def macro_pull():
|
99 |
sh = gc.open_by_url(all_dk_player_projections)
|
|
|
106 |
@st.cache_data
|
107 |
def convert_df_to_csv(df):
|
108 |
return df.to_csv().encode('utf-8')
|
109 |
+
rb_search = rb_util_weekly()
|
110 |
+
wr_search = wr_te_util_weekly()
|
111 |
+
rb_season = rb_util_season()
|
112 |
+
wr_season = wr_te_util_season()
|
113 |
macro_data = macro_pull()
|
114 |
pos_list = ['RB', 'WR', 'TE']
|
115 |
|
|
|
121 |
rb_search = rb_util_season()
|
122 |
wr_search = wr_te_util_season()
|
123 |
macro_data = macro_pull()
|
124 |
+
stat_type_var1 = st.radio("What table are you loading?", ('Macro Table', 'RB Usage (Weekly)', 'WR/TE Usage (Weekly)', 'RB Usage (Season)', 'WR/TE Usage (Season)'), key='stat_type_var1')
|
125 |
split_var1 = st.radio("Are you running the the whole league or certain teams?", ('All Teams', 'Specific Teams'), key='split_var1')
|
126 |
pos_split1 = st.radio("Are you viewing all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')
|
127 |
if pos_split1 == 'Specific Positions':
|
|
|
135 |
if stat_type_var1 == 'Macro Table':
|
136 |
table_instance = macro_data
|
137 |
table_instance = table_instance.set_index('team')
|
138 |
+
elif stat_type_var1 == 'RB Usage (Weekly)':
|
139 |
table_instance = rb_search
|
140 |
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
|
141 |
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
|
142 |
+
elif stat_type_var1 == 'WR/TE Usage (Weekly)':
|
143 |
table_instance = wr_search
|
144 |
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
|
145 |
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
|
146 |
+
elif stat_type_var1 == 'RB Usage (Season)':
|
147 |
+
table_instance = rb_season
|
148 |
+
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
|
149 |
+
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
|
150 |
+
elif stat_type_var1 == 'WR/TE Usage (Season)':
|
151 |
+
table_instance = wr_season
|
152 |
+
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
|
153 |
+
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
|
154 |
|
155 |
with col2:
|
156 |
if stat_type_var1 == 'Macro Table':
|
157 |
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(game_format, precision=2), use_container_width = True)
|
158 |
+
elif stat_type_var1 == 'RB Usage (Weekly)':
|
159 |
+
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(rb_util, precision=2), use_container_width = True)
|
160 |
+
elif stat_type_var1 == 'WR/TE Usage (Weekly)':
|
161 |
+
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(wr_te_util, precision=2), use_container_width = True)
|
162 |
+
elif stat_type_var1 == 'RB Usage (Season)':
|
163 |
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(rb_util, precision=2), use_container_width = True)
|
164 |
+
elif stat_type_var1 == 'WR/TE Usage (Season)':
|
165 |
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(wr_te_util, precision=2), use_container_width = True)
|
166 |
|
167 |
st.download_button(
|
168 |
label="Export Tables",
|
169 |
data=convert_df_to_csv(table_instance),
|
170 |
+
file_name='NFL_Research_export.csv',
|
171 |
mime='text/csv',
|
172 |
)
|