Multichem's picture
Update app.py
6f99a73 verified
raw
history blame
17.6 kB
import pulp
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import time
import random
import scipy.stats
@st.cache_resource
def init_conn():
scope = ['https://www.googleapis.com/auth/spreadsheets',
"https://www.googleapis.com/auth/drive"]
credentials = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": st.secrets['sheets_api_connect_pk'],
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
gc = gspread.service_account_from_dict(credentials)
all_dk_player_projections = st.secrets['NFL_Data']
return gc, all_dk_player_projections
st.set_page_config(layout="wide")
gc, all_dk_player_projections = init_conn()
game_format = {'Dropback% Proj': '{:.2%}', 'DesRush%': '{:.2%}', 'Rush%': '{:.2%}'}
rb_util = {'Player Snaps%': '{:.2%}','Rush Att%': '{:.2%}', 'Routes%': '{:.2%}', 'Targets%': '{:.2%}', 'SDD Snaps%': '{:.2%}', 'i5 Rush%': '{:.2%}',
'LDD Snaps%': '{:.2%}','2-min%': '{:.2%}'}
wr_te_util = {'Routes%': '{:.2%}','Targets%': '{:.2%}', 'Air Yards%': '{:.2%}', 'Endzone Targets%': '{:.2%}', 'Third/Fourth%': '{:.2%}', 'Third/Fourth Targets%': '{:.2%}',
'Play Action Targets%': '{:.2%}','2-min%': '{:.2%}'}
wr_matchups_form = {'Opp Man%': '{:.2%}','Opp Zone%': '{:.2%}'}
trending_form = {'Trend': '{:.2%}'}
@st.cache_resource(ttl = 600)
def pull_baselines():
sh = gc.open_by_url(all_dk_player_projections)
worksheet = sh.worksheet('RB_Util')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display = raw_display.replace('', np.nan)
raw_display = raw_display[['player_name', 'position', 'week', 'team_season', 'player_snaps_per', 'rush_attempts_per', 'routes_per', 'targets_per',
'tprr', 'player_SDD_snaps_per', 'inside_five_rush_per', 'player_LDD_snaps_per', 'two_min_per', 'exPPR', 'ppr_fantasy', 'UR_Rank']]
raw_display = raw_display.set_axis(['Player', 'Position', 'Week', 'Team-Season', 'Player Snaps%', 'Rush Att%', 'Routes%', 'Targets%',
'TPRR', 'SDD Snaps%', 'i5 Rush%', 'LDD Snaps%', '2-min%', 'Expected PPR', 'PPR', 'Utilization Rank'], axis='columns')
rb_search = raw_display.sort_values(by='Utilization Rank', ascending=True)
worksheet = sh.worksheet('WR_TE_Util')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display = raw_display.replace('', np.nan)
raw_display = raw_display[['player_name', 'position', 'week', 'team_season', 'routes_per', 'targets_per', 'tprr' , 'adot', 'air_yards_per',
'ayprr', 'endzone_targets_per', 'third_fourth_per', 'third_fourth_target_per', 'play_action_targets_per', 'exPPR', 'ppr_fantasy', 'UR_Rank']]
raw_display = raw_display.set_axis(['Player', 'Position', 'Week', 'Team-Season', 'Routes%', 'Targets%', 'TPRR' , 'ADOT', 'Air Yards%',
'AYPRR', 'Endzone Targets%', 'Third/Fourth%', 'Third/Fourth Targets%', 'Play Action Targets%', 'Expected PPR', 'PPR', 'Utilization Rank'], axis='columns')
wr_search = raw_display.sort_values(by='Utilization Rank', ascending=True)
worksheet = sh.worksheet('RB_Util_Season')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display = raw_display.replace('', np.nan)
raw_display = raw_display[['player_name', 'position', 'team_season', 'player_snaps_per', 'rush_attempts_per', 'routes_per', 'targets_per',
'tprr', 'player_SDD_snaps_per', 'inside_five_rush_per', 'player_LDD_snaps_per', 'two_min_per', 'exPPR', 'ppr_fantasy', 'UR_Rank']]
raw_display = raw_display.set_axis(['Player', 'Position', 'Team-Season', 'Player Snaps%', 'Rush Att%', 'Routes%', 'Targets%',
'TPRR', 'SDD Snaps%', 'i5 Rush%', 'LDD Snaps%', '2-min%', 'Expected PPR', 'PPR', 'Utilization Rank'], axis='columns')
rb_season = raw_display.sort_values(by='Utilization Rank', ascending=True)
worksheet = sh.worksheet('WR_TE_Util_Season')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display = raw_display.replace('', np.nan)
raw_display = raw_display[['player_name', 'position', 'team_season', 'routes_per', 'targets_per', 'tprr' , 'adot', 'air_yards_per',
'ayprr', 'endzone_targets_per', 'third_fourth_per', 'third_fourth_target_per', 'play_action_targets_per', 'exPPR', 'ppr_fantasy', 'UR_Rank']]
raw_display = raw_display.set_axis(['Player', 'Position', 'Team-Season', 'Routes%', 'Targets%', 'TPRR' , 'ADOT', 'Air Yards%',
'AYPRR', 'Endzone Targets%', 'Third/Fourth%', 'Third/Fourth Targets%', 'Play Action Targets%', 'Expected PPR', 'PPR', 'Utilization Rank'], axis='columns')
wr_season = raw_display.sort_values(by='Utilization Rank', ascending=True)
worksheet = sh.worksheet('Defensive Matchups')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display = raw_display.replace('', np.nan)
raw_display = raw_display.dropna(subset='Weighted Targets')
raw_display = raw_display[raw_display['Weighted Targets'] != '#DIV/0!']
raw_display = raw_display[raw_display['Weighted Targets'] != '#N/A']
wr_matchups = raw_display.sort_values(by='Weighted Targets', ascending=False)
worksheet = sh.worksheet('FL_Macro')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display = raw_display.replace('', np.nan)
raw_display = raw_display[raw_display['Active'] == 1]
raw_display = raw_display.dropna(subset='Team')
macro_data = raw_display.drop('Active', axis=1)
macro_data = macro_data.sort_values(by='Team Total', ascending=False)
worksheet = sh.worksheet('Ownership Trend')
raw_display = pd.DataFrame(worksheet.get_all_records())
raw_display = raw_display.replace('', np.nan)
raw_display = raw_display.dropna(subset='Team')
trending_data = raw_display.sort_values(by='Trend', ascending=False)
return rb_search, wr_search, rb_season, wr_season, wr_matchups, macro_data, trending_data
@st.cache_data
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
rb_search, wr_search, rb_season, wr_season, wr_matchups, macro_data, trending_data = pull_baselines()
pos_list = ['RB', 'WR', 'TE']
tab1, tab2 = st.tabs(["Slate Specific", "Season Long Research"])
with tab1:
col1, col2 = st.columns([1, 8])
with col1:
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
rb_search, wr_search, rb_season, wr_season, wr_matchups, macro_data, trending_data = pull_baselines()
stat_type_var2 = st.radio("What table are you loading?", ('Macro Stats', 'WR/TE Coverage Matchups', 'Ownership Trends', 'Nothing idk lol'))
if stat_type_var2 == 'WR/TE Coverage Matchups':
routes_var2 = st.slider("Is there a certain range of routes you want to include?", 0, 50, (10, 50), key='sal_var2')
split_var2 = st.radio("Are you running the the whole league or certain teams?", ('All Teams', 'Specific Teams'))
pos_split2 = st.radio("Are you viewing all positions or specific positions?", ('All Positions', 'Specific Positions'))
if pos_split2 == 'Specific Positions':
if stat_type_var2 == 'WR/TE Coverage Matchups':
pos_var2 = st.multiselect('What Positions would you like to view?', options = ['RB', 'WR', 'TE'])
elif stat_type_var2 == 'Ownership Trends':
pos_var2 = st.multiselect('What Positions would you like to view?', options = ['QB', 'RB', 'WR', 'TE', 'DST'])
elif pos_split2 == 'All Positions':
pos_var2 = pos_list
if split_var2 == 'Specific Teams':
team_var2 = st.multiselect('Which teams would you like to include in the Table?', options = wr_matchups['Team'].unique())
elif split_var2 == 'All Teams':
team_var2 = wr_matchups['Team'].unique().tolist()
if stat_type_var2 == 'Macro Stats':
slate_table_instance = macro_data
slate_table_instance = slate_table_instance.set_index('Team')
elif stat_type_var2 == 'WR/TE Coverage Matchups':
slate_table_instance = wr_matchups
slate_table_instance = slate_table_instance[slate_table_instance['Team'].isin(team_var2)]
slate_table_instance = slate_table_instance[slate_table_instance['Position'].isin(pos_var2)]
slate_table_instance = slate_table_instance[slate_table_instance['Avg Routes'] >= routes_var2[0]]
slate_table_instance = slate_table_instance[slate_table_instance['Avg Routes'] <= routes_var2[1]]
slate_table_instance = slate_table_instance.set_index('name')
elif stat_type_var2 == 'Ownership Trends':
slate_table_instance = trending_data
slate_table_instance = slate_table_instance[slate_table_instance['Team'].isin(team_var2)]
slate_table_instance = slate_table_instance[slate_table_instance['Position'].isin(pos_var2)]
elif stat_type_var2 == 'Nothing idk lol':
slate_table_instance = wr_matchups
with col2:
if stat_type_var2 == 'Macro Stats':
st.dataframe(slate_table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(game_format, precision=2), height=1000, use_container_width = True)
elif stat_type_var2 == 'WR/TE Coverage Matchups':
st.dataframe(slate_table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(wr_matchups_form, precision=2), height=1000, use_container_width = True)
elif stat_type_var2 == 'Ownership Trends':
st.dataframe(slate_table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').format(trending_form, precision=2), height=1000, use_container_width = True)
elif stat_type_var2 == 'Nothing idk lol':
st.write('lol same bro but yo the vibes immaculate')
if stat_type_var2 == 'WR/TE Coverage Matchups':
st.download_button(
label="Export Tables",
data=convert_df_to_csv(slate_table_instance),
file_name='NFL_Slate_Research_export.csv',
mime='text/csv',
)
with tab2:
col1, col2 = st.columns([1, 8])
with col1:
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
rb_search, wr_search, rb_season, wr_season, wr_matchups, macro_data, trending_data = pull_baselines()
stat_type_var1 = st.radio("What table are you loading?", ('RB Usage (Weekly)', 'WR/TE Usage (Weekly)', 'RB Usage (Season)', 'WR/TE Usage (Season)'), key='stat_type_var1')
split_var1 = st.radio("Are you running the the whole league or certain teams?", ('All Teams', 'Specific Teams'), key='split_var1')
pos_split1 = st.radio("Are you viewing all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')
week_split1 = st.radio("Are you viewing all weeks or specific weeks?", ('All Weeks', 'Specific Weeks'), key='week_split1')
if pos_split1 == 'Specific Positions':
pos_var1 = st.multiselect('What Positions would you like to view?', options = ['RB', 'WR', 'TE'])
elif pos_split1 == 'All Positions':
pos_var1 = pos_list
if split_var1 == 'Specific Teams':
team_var1 = st.multiselect('Which teams would you like to include in the Table?', options = rb_search['Team-Season'].unique(), key='team_var1')
elif split_var1 == 'All Teams':
team_var1 = rb_search['Team-Season'].unique().tolist()
if week_split1 == 'Specific Weeks':
week_var1 = st.multiselect('Which weeks would you like to include in the Table?', options = rb_search['Week'].unique(), key='week_var1')
elif week_split1 == 'All Weeks':
week_var1 = rb_search['Week'].unique().tolist()
if stat_type_var1 == 'RB Usage (Weekly)':
table_instance = rb_search
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
table_instance = table_instance[table_instance['Week'].isin(week_var1)]
table_instance['PPR_Diff'] = table_instance['Expected PPR'] - table_instance['PPR']
elif stat_type_var1 == 'WR/TE Usage (Weekly)':
table_instance = wr_search
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
table_instance = table_instance[table_instance['Week'].isin(week_var1)]
table_instance['PPR_Diff'] = table_instance['Expected PPR'] - table_instance['PPR']
elif stat_type_var1 == 'RB Usage (Season)':
table_instance = rb_season
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
table_instance['PPR_Diff'] = table_instance['Expected PPR'] - table_instance['PPR']
elif stat_type_var1 == 'WR/TE Usage (Season)':
table_instance = wr_season
table_instance = table_instance[table_instance['Team-Season'].isin(team_var1)]
table_instance = table_instance[table_instance['Position'].isin(pos_var1)]
table_instance['PPR_Diff'] = table_instance['Expected PPR'] - table_instance['PPR']
with col2:
if stat_type_var1 == 'RB Usage (Weekly)':
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(rb_util, precision=2), height=1000, use_container_width = True)
elif stat_type_var1 == 'WR/TE Usage (Weekly)':
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(wr_te_util, precision=2), height=1000, use_container_width = True)
elif stat_type_var1 == 'RB Usage (Season)':
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(rb_util, precision=2), height=1000, use_container_width = True)
elif stat_type_var1 == 'WR/TE Usage (Season)':
st.dataframe(table_instance.style.background_gradient(axis=0).background_gradient(cmap = 'RdYlGn').background_gradient(cmap='RdYlGn_r', subset = 'Utilization Rank').format(wr_te_util, precision=2), height=1000, use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(table_instance),
file_name='NFL_Research_export.csv',
mime='text/csv',
)