Multichem commited on
Commit
9a9571b
·
verified ·
1 Parent(s): 2b11e10

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -10
app.py CHANGED
@@ -26,6 +26,7 @@ gc = gspread.service_account_from_dict(credentials)
26
  st.set_page_config(layout="wide")
27
 
28
  american_format = {'ML': '{:.2%}'}
 
29
 
30
  @st.cache_resource(ttl = 600)
31
  def init_baselines():
@@ -35,20 +36,42 @@ def init_baselines():
35
  tennis_model = frame_hold.drop_duplicates(subset='Player')
36
  tennis_model = tennis_model.set_index('Player')
37
  tennis_model = tennis_model.sort_values(by='Median', ascending=False)
 
 
 
 
 
 
 
 
 
38
 
39
- return tennis_model
40
 
41
  @st.cache_resource()
42
  def convert_df_to_csv(df):
43
  return df.to_csv().encode('utf-8')
44
 
45
- tennis_base = init_baselines()
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
- with st.container():
48
- st.dataframe(tennis_base.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(american_format, precision=2), height = 1000, use_container_width = True)
49
- st.download_button(
50
- label="Export Tables",
51
- data=convert_df_to_csv(tennis_base),
52
- file_name='tennis_model_export.csv',
53
- mime='text/csv',
54
- )
 
 
26
  st.set_page_config(layout="wide")
27
 
28
  american_format = {'ML': '{:.2%}'}
29
+ mma_format = {'ML_perc': '{:.2%}', 'Min_%': '{:.2%}', 'Med_%': '{:.2%}', }
30
 
31
  @st.cache_resource(ttl = 600)
32
  def init_baselines():
 
36
  tennis_model = frame_hold.drop_duplicates(subset='Player')
37
  tennis_model = tennis_model.set_index('Player')
38
  tennis_model = tennis_model.sort_values(by='Median', ascending=False)
39
+
40
+ sh = gc.open_by_url("https://docs.google.com/spreadsheets/d/1T4n3-KC141n2XwhRCqLssuk1nVdHjsBPSdb8Q6LopuY/edit?gid=0#gid=0")
41
+ worksheet = sh.worksheet('JBOTTUM_MMA')
42
+ frame_hold = pd.DataFrame(worksheet.get_all_records())
43
+ mma_model = frame_hold.drop_duplicates(subset='Player')
44
+ mma_model = mma_model.set_index('Player')
45
+ mma_model = mma_model.sort_values(by='Median', ascending=False)
46
+ mma_model = mma_model[['Player', 'Opponent', 'Salary', 'Floor_Adj', 'Median', 'Ceiling_Adj', 'ML_perc', 'Min_Win', 'Min_%', 'Median_Win', 'Med_%', 'Max_Win']]
47
+
48
 
49
+ return tennis_model, mma_model
50
 
51
  @st.cache_resource()
52
  def convert_df_to_csv(df):
53
  return df.to_csv().encode('utf-8')
54
 
55
+ tennis_base, mma_base = init_baselines()
56
+
57
+ tab1, tab2 = st.tabs(['Tennis Models', 'MMA Models'])
58
+
59
+ with tab1:
60
+ with st.container():
61
+ st.dataframe(tennis_base.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(american_format, precision=2), height = 1000, use_container_width = True)
62
+ st.download_button(
63
+ label="Export Tables",
64
+ data=convert_df_to_csv(tennis_base),
65
+ file_name='tennis_model_export.csv',
66
+ mime='text/csv',
67
+ )
68
 
69
+ with tab2:
70
+ with st.container():
71
+ st.dataframe(mma_base.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(mma_format, precision=2), height = 1000, use_container_width = True)
72
+ st.download_button(
73
+ label="Export Tables",
74
+ data=convert_df_to_csv(mma_base),
75
+ file_name='mma_model_export.csv',
76
+ mime='text/csv',
77
+ )