Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -26,6 +26,7 @@ gc = gspread.service_account_from_dict(credentials)
|
|
26 |
st.set_page_config(layout="wide")
|
27 |
|
28 |
american_format = {'ML': '{:.2%}'}
|
|
|
29 |
|
30 |
@st.cache_resource(ttl = 600)
|
31 |
def init_baselines():
|
@@ -35,20 +36,42 @@ def init_baselines():
|
|
35 |
tennis_model = frame_hold.drop_duplicates(subset='Player')
|
36 |
tennis_model = tennis_model.set_index('Player')
|
37 |
tennis_model = tennis_model.sort_values(by='Median', ascending=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
return tennis_model
|
40 |
|
41 |
@st.cache_resource()
|
42 |
def convert_df_to_csv(df):
|
43 |
return df.to_csv().encode('utf-8')
|
44 |
|
45 |
-
tennis_base = init_baselines()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
with
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
26 |
st.set_page_config(layout="wide")
|
27 |
|
28 |
american_format = {'ML': '{:.2%}'}
|
29 |
+
mma_format = {'ML_perc': '{:.2%}', 'Min_%': '{:.2%}', 'Med_%': '{:.2%}', }
|
30 |
|
31 |
@st.cache_resource(ttl = 600)
|
32 |
def init_baselines():
|
|
|
36 |
tennis_model = frame_hold.drop_duplicates(subset='Player')
|
37 |
tennis_model = tennis_model.set_index('Player')
|
38 |
tennis_model = tennis_model.sort_values(by='Median', ascending=False)
|
39 |
+
|
40 |
+
sh = gc.open_by_url("https://docs.google.com/spreadsheets/d/1T4n3-KC141n2XwhRCqLssuk1nVdHjsBPSdb8Q6LopuY/edit?gid=0#gid=0")
|
41 |
+
worksheet = sh.worksheet('JBOTTUM_MMA')
|
42 |
+
frame_hold = pd.DataFrame(worksheet.get_all_records())
|
43 |
+
mma_model = frame_hold.drop_duplicates(subset='Player')
|
44 |
+
mma_model = mma_model.set_index('Player')
|
45 |
+
mma_model = mma_model.sort_values(by='Median', ascending=False)
|
46 |
+
mma_model = mma_model[['Player', 'Opponent', 'Salary', 'Floor_Adj', 'Median', 'Ceiling_Adj', 'ML_perc', 'Min_Win', 'Min_%', 'Median_Win', 'Med_%', 'Max_Win']]
|
47 |
+
|
48 |
|
49 |
+
return tennis_model, mma_model
|
50 |
|
51 |
@st.cache_resource()
|
52 |
def convert_df_to_csv(df):
|
53 |
return df.to_csv().encode('utf-8')
|
54 |
|
55 |
+
tennis_base, mma_base = init_baselines()
|
56 |
+
|
57 |
+
tab1, tab2 = st.tabs(['Tennis Models', 'MMA Models'])
|
58 |
+
|
59 |
+
with tab1:
|
60 |
+
with st.container():
|
61 |
+
st.dataframe(tennis_base.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(american_format, precision=2), height = 1000, use_container_width = True)
|
62 |
+
st.download_button(
|
63 |
+
label="Export Tables",
|
64 |
+
data=convert_df_to_csv(tennis_base),
|
65 |
+
file_name='tennis_model_export.csv',
|
66 |
+
mime='text/csv',
|
67 |
+
)
|
68 |
|
69 |
+
with tab2:
|
70 |
+
with st.container():
|
71 |
+
st.dataframe(mma_base.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(mma_format, precision=2), height = 1000, use_container_width = True)
|
72 |
+
st.download_button(
|
73 |
+
label="Export Tables",
|
74 |
+
data=convert_df_to_csv(mma_base),
|
75 |
+
file_name='mma_model_export.csv',
|
76 |
+
mime='text/csv',
|
77 |
+
)
|