improve one click discharge paper
Browse files- app.py +25 -20
- utils/oneclick.py +177 -0
app.py
CHANGED
@@ -18,7 +18,7 @@ logger = logging.getLogger(__name__)
|
|
18 |
|
19 |
# Import PDF utilities
|
20 |
from utils.pdfutils import PDFGenerator, generate_discharge_summary
|
21 |
-
|
22 |
# Import necessary libraries for new file types and AI analysis functions
|
23 |
import pydicom # For DICOM
|
24 |
import hl7 # For HL7
|
@@ -394,25 +394,30 @@ with gr.Blocks(theme=cyberpunk_theme) as demo: # Apply the theme here
|
|
394 |
analyze_csv_file_with_ai, inputs=csv_file, outputs=csv_ai_output
|
395 |
)
|
396 |
|
397 |
-
|
398 |
-
|
399 |
-
):
|
400 |
-
gr.
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
|
|
|
|
|
|
|
|
|
|
416 |
|
417 |
# Connect the patient data buttons
|
418 |
patient_data_button.click(
|
|
|
18 |
|
19 |
# Import PDF utilities
|
20 |
from utils.pdfutils import PDFGenerator, generate_discharge_summary
|
21 |
+
from utils.oneclick import generate_discharge_paper_one_click
|
22 |
# Import necessary libraries for new file types and AI analysis functions
|
23 |
import pydicom # For DICOM
|
24 |
import hl7 # For HL7
|
|
|
394 |
analyze_csv_file_with_ai, inputs=csv_file, outputs=csv_ai_output
|
395 |
)
|
396 |
|
397 |
+
with gr.Tab("One-Click Discharge Paper (AI)", elem_classes="cyberpunk-tab"):
|
398 |
+
gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>One-Click Medical Discharge Paper Generation with AI Content</h2>")
|
399 |
+
with gr.Row():
|
400 |
+
patient_id_input = gr.Textbox(label="Patient ID (Optional)", placeholder="Enter Patient ID")
|
401 |
+
first_name_input = gr.Textbox(label="First Name (Optional)", placeholder="Enter First Name")
|
402 |
+
last_name_input = gr.Textbox(label="Last Name (Optional)", placeholder="Enter Last Name")
|
403 |
+
one_click_ai_pdf_button = gr.Button(
|
404 |
+
"Generate Discharge Paper with AI (One-Click)", elem_classes="cyberpunk-button"
|
405 |
+
)
|
406 |
+
one_click_ai_pdf_status = gr.Textbox(label="Discharge Paper Generation Status (AI)")
|
407 |
+
one_click_ai_pdf_download = gr.File(label="Download Discharge Paper (AI)")
|
408 |
+
|
409 |
+
# Initialize MeldRxAPI (ensure client_id, client_secret, workspace_id are set in environment variables)
|
410 |
+
client_id = os.getenv("APPID")
|
411 |
+
client_secret = os.getenv("CLIENT_SECRET") # Optional, set if required
|
412 |
+
workspace_id = os.getenv("WORKSPACE_URL")
|
413 |
+
redirect_uri = "https://multitransformer-discharge-guard.hf.space/callback"
|
414 |
+
meldrx_api = MeldRxAPI(client_id, client_secret, workspace_id, redirect_uri)
|
415 |
+
|
416 |
+
one_click_ai_pdf_button.click(
|
417 |
+
fn=lambda pid, fname, lname: generate_discharge_paper_one_click(meldrx_api, pid, fname, lname),
|
418 |
+
inputs=[patient_id_input, first_name_input, last_name_input],
|
419 |
+
outputs=[one_click_ai_pdf_download, one_click_ai_pdf_status],
|
420 |
+
)
|
421 |
|
422 |
# Connect the patient data buttons
|
423 |
patient_data_button.click(
|
utils/oneclick.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
from typing import Optional, Dict, Any
|
5 |
+
from huggingface_hub import InferenceClient
|
6 |
+
from utils.meldrx import MeldRxAPI
|
7 |
+
from utils.pdfutils import PDFGenerator
|
8 |
+
from datetime import datetime
|
9 |
+
|
10 |
+
# Set up logging
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
# Initialize Hugging Face Inference Client
|
15 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
16 |
+
if not HF_TOKEN:
|
17 |
+
raise ValueError("HF_TOKEN environment variable not set. Please set your Hugging Face API token.")
|
18 |
+
client = InferenceClient(api_key=HF_TOKEN)
|
19 |
+
MODEL_NAME = "meta-llama/Llama-3.3-70B-Instruct" # Model to use for discharge summary generation
|
20 |
+
|
21 |
+
def generate_ai_discharge_summary(patient_data: Dict[str, Any]) -> Optional[str]:
|
22 |
+
"""
|
23 |
+
Generate a discharge summary using the Hugging Face Inference Client based on patient data.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
patient_data (Dict[str, Any]): Patient data in FHIR JSON format.
|
27 |
+
|
28 |
+
Returns:
|
29 |
+
Optional[str]: Generated discharge summary text or None if generation fails.
|
30 |
+
"""
|
31 |
+
try:
|
32 |
+
# Extract relevant patient information
|
33 |
+
name = patient_data.get("name", [{}])[0]
|
34 |
+
full_name = f"{name.get('given', ['Unknown'])[0]} {name.get('family', 'Unknown')}"
|
35 |
+
gender = patient_data.get("gender", "Unknown").capitalize()
|
36 |
+
birth_date = patient_data.get("birthDate", "Unknown")
|
37 |
+
age = calculate_age(birth_date) if birth_date != "Unknown" else "Unknown"
|
38 |
+
|
39 |
+
# Placeholder for additional clinical data (e.g., diagnosis, treatment)
|
40 |
+
# In a real scenario, this would come from related FHIR resources like Encounter, Condition, etc.
|
41 |
+
patient_info = (
|
42 |
+
f"Patient Name: {full_name}\n"
|
43 |
+
f"Gender: {gender}\n"
|
44 |
+
f"Age: {age}\n\n"
|
45 |
+
f"Presentation and Diagnosis:\n[Diagnosis data not provided in this snippet; assumed from related FHIR resources]\n\n"
|
46 |
+
f"Hospital Course:\n[Treatment data not provided in this snippet; assumed from related FHIR resources]\n\n"
|
47 |
+
f"Outcome:\n[Outcome data not provided in this snippet; assumed from related FHIR resources]"
|
48 |
+
)
|
49 |
+
|
50 |
+
# Define the prompt for the AI model
|
51 |
+
messages = [
|
52 |
+
{"role": "user", "content": ""},
|
53 |
+
{
|
54 |
+
"role": "assistant",
|
55 |
+
"content": (
|
56 |
+
"You are a senior expert medical health practitioner known for producing discharge papers. "
|
57 |
+
"You will receive patient information and treatment details. Produce a complete discharge summary "
|
58 |
+
"based on the information provided."
|
59 |
+
)
|
60 |
+
},
|
61 |
+
{"role": "user", "content": patient_info}
|
62 |
+
]
|
63 |
+
|
64 |
+
# Generate discharge summary using streaming
|
65 |
+
stream = client.chat.completions.create(
|
66 |
+
model=MODEL_NAME,
|
67 |
+
messages=messages,
|
68 |
+
temperature=0.4,
|
69 |
+
max_tokens=3584,
|
70 |
+
top_p=0.7,
|
71 |
+
stream=True
|
72 |
+
)
|
73 |
+
|
74 |
+
discharge_summary = ""
|
75 |
+
for chunk in stream:
|
76 |
+
content = chunk.choices[0].delta.content
|
77 |
+
if content:
|
78 |
+
discharge_summary += content
|
79 |
+
|
80 |
+
return discharge_summary.strip()
|
81 |
+
|
82 |
+
except Exception as e:
|
83 |
+
logger.error(f"Error generating AI discharge summary: {str(e)}")
|
84 |
+
return None
|
85 |
+
|
86 |
+
def calculate_age(birth_date: str) -> str:
|
87 |
+
"""
|
88 |
+
Calculate age from birth date.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
birth_date (str): Birth date in YYYY-MM-DD format.
|
92 |
+
|
93 |
+
Returns:
|
94 |
+
str: Calculated age or 'Unknown' if calculation fails.
|
95 |
+
"""
|
96 |
+
try:
|
97 |
+
birth = datetime.strptime(birth_date, "%Y-%m-%d")
|
98 |
+
today = datetime.today()
|
99 |
+
age = today.year - birth.year - ((today.month, today.day) < (birth.month, birth.day))
|
100 |
+
return str(age)
|
101 |
+
except ValueError:
|
102 |
+
return "Unknown"
|
103 |
+
|
104 |
+
def generate_discharge_paper_one_click(
|
105 |
+
meldrx_api: MeldRxAPI,
|
106 |
+
patient_id: str = None,
|
107 |
+
first_name: str = None,
|
108 |
+
last_name: str = None
|
109 |
+
) -> tuple[Optional[str], str]:
|
110 |
+
"""
|
111 |
+
Generate a discharge paper with AI content in one click.
|
112 |
+
|
113 |
+
Args:
|
114 |
+
meldrx_api (MeldRxAPI): Initialized MeldRxAPI instance.
|
115 |
+
patient_id (str, optional): Patient ID to fetch specific patient data.
|
116 |
+
first_name (str, optional): First name for patient lookup if patient_id is not provided.
|
117 |
+
last_name (str, optional): Last name for patient lookup if patient_id is not provided.
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
tuple[Optional[str], str]: (PDF file path, Status message)
|
121 |
+
"""
|
122 |
+
try:
|
123 |
+
# Authenticate if not already authenticated
|
124 |
+
if not meldrx_api.access_token and not meldrx_api.authenticate():
|
125 |
+
return None, "Error: Authentication failed. Please authenticate first."
|
126 |
+
|
127 |
+
# Fetch patient data
|
128 |
+
if patient_id:
|
129 |
+
# Fetch specific patient by ID (assuming FHIR Patient resource endpoint supports this)
|
130 |
+
patient_data = meldrx_api.get_patients() # Simplified; assumes ID filtering in real API
|
131 |
+
if not patient_data or "entry" not in patient_data:
|
132 |
+
return None, "Error: Failed to fetch patient data by ID."
|
133 |
+
patients = [entry["resource"] for entry in patient_data.get("entry", [])]
|
134 |
+
patient = next((p for p in patients if p.get("id") == patient_id), None)
|
135 |
+
if not patient:
|
136 |
+
return None, f"Error: Patient with ID {patient_id} not found."
|
137 |
+
else:
|
138 |
+
# Fetch all patients and filter by name if provided
|
139 |
+
patient_data = meldrx_api.get_patients()
|
140 |
+
if not patient_data or "entry" not in patient_data:
|
141 |
+
return None, "Error: Failed to fetch patient data."
|
142 |
+
patients = [entry["resource"] for entry in patient_data.get("entry", [])]
|
143 |
+
if first_name and last_name:
|
144 |
+
patient = next(
|
145 |
+
(p for p in patients if
|
146 |
+
p.get("name", [{}])[0].get("given", [""])[0].lower() == first_name.lower() and
|
147 |
+
p.get("name", [{}])[0].get("family", "").lower() == last_name.lower()),
|
148 |
+
None
|
149 |
+
)
|
150 |
+
if not patient:
|
151 |
+
return None, f"Error: Patient with name {first_name} {last_name} not found."
|
152 |
+
else:
|
153 |
+
# Default to first patient if no specific ID or name provided
|
154 |
+
patient = patients[0] if patients else None
|
155 |
+
if not patient:
|
156 |
+
return None, "Error: No patients found in the workspace."
|
157 |
+
|
158 |
+
# Generate AI discharge summary
|
159 |
+
ai_content = generate_ai_discharge_summary(patient)
|
160 |
+
if not ai_content:
|
161 |
+
return None, "Error: Failed to generate AI discharge summary."
|
162 |
+
|
163 |
+
# Generate PDF
|
164 |
+
pdf_generator = PDFGenerator()
|
165 |
+
pdf_path = pdf_generator.generate_pdf_from_text(
|
166 |
+
ai_content,
|
167 |
+
f"discharge_summary_{patient.get('id', 'unknown')}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.pdf"
|
168 |
+
)
|
169 |
+
|
170 |
+
if pdf_path:
|
171 |
+
return pdf_path, f"Success: Discharge paper generated for {patient.get('name', [{}])[0].get('given', ['Unknown'])[0]} {patient.get('name', [{}])[0].get('family', 'Unknown')}"
|
172 |
+
else:
|
173 |
+
return None, "Error: Failed to generate PDF."
|
174 |
+
|
175 |
+
except Exception as e:
|
176 |
+
logger.error(f"Error in one-click discharge generation: {str(e)}")
|
177 |
+
return None, f"Error: {str(e)}"
|