Spaces:
Runtime error
Runtime error
Commit
·
89531b2
1
Parent(s):
f0cc5ec
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
-
import jax
|
5 |
-
import jax.numpy as jnp
|
6 |
-
from flax.jax_utils import replicate
|
7 |
-
from flax.training.common_utils import shard
|
8 |
from PIL import Image
|
9 |
from segment_anything import SamPredictor, sam_model_registry, SamAutomaticMaskGenerator
|
10 |
-
from diffusers import (
|
11 |
-
FlaxStableDiffusionControlNetPipeline,
|
12 |
-
FlaxControlNetModel,
|
13 |
)
|
14 |
from transformers import pipeline
|
15 |
|
@@ -49,11 +42,6 @@ with gr.Blocks() as demo:
|
|
49 |
"""
|
50 |
## Work in Progress
|
51 |
### About
|
52 |
-
We have trained a JAX ControlNet model for semantic segmentation on Wildlife Animal Images.
|
53 |
-
|
54 |
-
For the training data creation we used the [Wildlife Animals Images](https://www.kaggle.com/datasets/anshulmehtakaggl/wildlife-animals-images) dataset.
|
55 |
-
We created segmentation masks with the help of [Grounded SAM](https://github.com/IDEA-Research/Grounded-Segment-Anything) where we used the animals names
|
56 |
-
as input prompts for detection and more accurate segmentation.
|
57 |
|
58 |
### How To Use
|
59 |
|
@@ -64,10 +52,6 @@ with gr.Blocks() as demo:
|
|
64 |
mask_img = gr.Image(label="Mask", interactive=False)
|
65 |
output_img = gr.Image(label="Output", interactive=False)
|
66 |
|
67 |
-
with gr.Row():
|
68 |
-
prompt_text = gr.Textbox(lines=1, label="Prompt")
|
69 |
-
negative_prompt_text = gr.Textbox(lines=1, label="Negative Prompt")
|
70 |
-
|
71 |
with gr.Row():
|
72 |
submit = gr.Button("Submit")
|
73 |
clear = gr.Button("Clear")
|
@@ -84,7 +68,8 @@ with gr.Blocks() as demo:
|
|
84 |
pil_img = Image.fromarray(np_img, 'RGB')
|
85 |
mask_images.append(pil_img)
|
86 |
|
87 |
-
return np.stack(mask_images)
|
|
|
88 |
|
89 |
# def infer(
|
90 |
# image, prompts, negative_prompts, num_inference_steps=50, seed=4, num_samples=4
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
|
|
|
|
|
|
|
|
4 |
from PIL import Image
|
5 |
from segment_anything import SamPredictor, sam_model_registry, SamAutomaticMaskGenerator
|
|
|
|
|
|
|
6 |
)
|
7 |
from transformers import pipeline
|
8 |
|
|
|
42 |
"""
|
43 |
## Work in Progress
|
44 |
### About
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
### How To Use
|
47 |
|
|
|
52 |
mask_img = gr.Image(label="Mask", interactive=False)
|
53 |
output_img = gr.Image(label="Output", interactive=False)
|
54 |
|
|
|
|
|
|
|
|
|
55 |
with gr.Row():
|
56 |
submit = gr.Button("Submit")
|
57 |
clear = gr.Button("Clear")
|
|
|
68 |
pil_img = Image.fromarray(np_img, 'RGB')
|
69 |
mask_images.append(pil_img)
|
70 |
|
71 |
+
#return np.stack(mask_images)
|
72 |
+
return image
|
73 |
|
74 |
# def infer(
|
75 |
# image, prompts, negative_prompts, num_inference_steps=50, seed=4, num_samples=4
|