Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,446 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import warnings
|
4 |
+
import time
|
5 |
+
from typing import Dict, Tuple, List, Optional
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from pathlib import Path
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import pandas as pd
|
11 |
+
from tqdm.auto import tqdm
|
12 |
+
import google.generativeai as genai
|
13 |
+
from tenacity import retry, stop_after_attempt, wait_exponential
|
14 |
+
from sentence_transformers import SentenceTransformer
|
15 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
16 |
+
import gradio as gr
|
17 |
+
|
18 |
+
# Suppress warnings
|
19 |
+
warnings.filterwarnings("ignore")
|
20 |
+
|
21 |
+
@dataclass
|
22 |
+
class EvaluationConfig:
|
23 |
+
api_key: str
|
24 |
+
model_name: str = "gemini-1.5-flash"
|
25 |
+
batch_size: int = 5
|
26 |
+
retry_attempts: int = 5
|
27 |
+
min_wait: int = 4
|
28 |
+
max_wait: int = 60
|
29 |
+
score_scale: Tuple[int, int] = (0, 100)
|
30 |
+
|
31 |
+
class EvaluationPrompts:
|
32 |
+
@staticmethod
|
33 |
+
def get_first_check(original_prompt: str, response: str) -> str:
|
34 |
+
return f"""Оцените следующий ответ по шкале от 0 до 100:
|
35 |
+
Оригинальный запрос: {original_prompt}
|
36 |
+
Ответ: {response}
|
37 |
+
Оцените по критериям:
|
38 |
+
1. Креативность (уникальность и оригинальность ответа)
|
39 |
+
2. Разнообразие (использование разных языковых средств)
|
40 |
+
3. Релевантность (соответствие запросу)
|
41 |
+
Дайте только числовые оценки в формате:
|
42 |
+
Креативность: [число]
|
43 |
+
Разнообразие: [число]
|
44 |
+
Релевантность: [число]"""
|
45 |
+
|
46 |
+
@staticmethod
|
47 |
+
def get_second_check(original_prompt: str, response: str) -> str:
|
48 |
+
return f"""Вы — эксперт по оценке качества текстов, обладающий глубокими знаниями в области лингвистики, креативного письма и искусственного интеллекта. Ваша задача — объективно оценить представленный ответ по следующим критериям.
|
49 |
+
|
50 |
+
### **Оригинальный запрос:**
|
51 |
+
{original_prompt}
|
52 |
+
|
53 |
+
### **Ответ:**
|
54 |
+
{response}
|
55 |
+
|
56 |
+
## **Инструкция по оценке**
|
57 |
+
Оцените ответ по шкале от 0 до 100 по трем критериям:
|
58 |
+
|
59 |
+
1. **Креативность** – Насколько ответ уникален и оригинален? Есть ли неожиданные, но уместные идеи?
|
60 |
+
2. **Разнообразие** – Использует ли ответ различные стилистические приемы, примеры, аналогии, синонимы? Насколько он выразителен?
|
61 |
+
3. **Релевантность** – Насколько ответ соответствует запросу? Полностью ли он отвечает на поставленный вопрос?
|
62 |
+
|
63 |
+
### **Формат ответа:**
|
64 |
+
Выведите оценки в точном формате:
|
65 |
+
Креативность: [число]
|
66 |
+
Разнообразие: [число]
|
67 |
+
Релевантность: [число]
|
68 |
+
|
69 |
+
Затем подробно объясните каждую оценку, используя примеры из ответа. Если какая-то оценка ниже 50, дайте конкретные рекомендации по улучшению."""
|
70 |
+
|
71 |
+
@staticmethod
|
72 |
+
def get_third_check(original_prompt: str, response: str) -> str:
|
73 |
+
return f"""Вы — эксперт по анализу текстов. Ваша задача — оценить ответ на запрос по шкале от 0 до 100 по трем критериям.
|
74 |
+
|
75 |
+
### **Оригинальный запрос:**
|
76 |
+
{original_prompt}
|
77 |
+
|
78 |
+
### **Ответ:**
|
79 |
+
{response}
|
80 |
+
|
81 |
+
## **Критерии оценки:**
|
82 |
+
1. **Креативность** – Насколько ответ уникален и оригинален? Используются ли необычные идеи и неожиданные подходы?
|
83 |
+
2. **Разнообразие** – Применяются ли разные языковые конструкции, примеры, аналогии, синонимы?
|
84 |
+
3. **Релевантность** – Насколько ответ соответствует запросу? Полностью ли он отвечает на поставленный вопрос?
|
85 |
+
|
86 |
+
Выведите оценки в точном формате:
|
87 |
+
Креативность: [число]
|
88 |
+
Разнообразие: [число]
|
89 |
+
Релевантность: [число]"""
|
90 |
+
|
91 |
+
|
92 |
+
class ResponseEvaluator:
|
93 |
+
def __init__(self, config: EvaluationConfig):
|
94 |
+
"""Initialize the evaluator with given configuration"""
|
95 |
+
self.config = config
|
96 |
+
self.model = self._setup_model()
|
97 |
+
|
98 |
+
def _setup_model(self) -> genai.GenerativeModel:
|
99 |
+
"""Set up the Gemini model"""
|
100 |
+
genai.configure(api_key=self.config.api_key)
|
101 |
+
return genai.GenerativeModel(self.config.model_name)
|
102 |
+
|
103 |
+
@retry(
|
104 |
+
stop=stop_after_attempt(5),
|
105 |
+
wait=wait_exponential(multiplier=1, min=4, max=60)
|
106 |
+
)
|
107 |
+
def evaluate_single_response(self, original_prompt: str, response: str) -> Tuple[Dict[str, float], str]:
|
108 |
+
"""Evaluate a single response using the configured model"""
|
109 |
+
evaluation_prompts = self._create_evaluation_prompt(original_prompt, response)
|
110 |
+
all_scores = []
|
111 |
+
all_texts = []
|
112 |
+
|
113 |
+
for prompt in evaluation_prompts:
|
114 |
+
try:
|
115 |
+
evaluation = self.model.generate_content(prompt)
|
116 |
+
scores = self._parse_evaluation_scores(evaluation.text)
|
117 |
+
all_scores.append(scores)
|
118 |
+
all_texts.append(evaluation.text)
|
119 |
+
except Exception as e:
|
120 |
+
print(f"Error with prompt: {str(e)}")
|
121 |
+
all_scores.append({
|
122 |
+
"Креативность": 0,
|
123 |
+
"Разнообразие": 0,
|
124 |
+
"Релевантность": 0,
|
125 |
+
"Среднее": 0
|
126 |
+
})
|
127 |
+
all_texts.append("Error in evaluation")
|
128 |
+
|
129 |
+
final_scores = {
|
130 |
+
"Креативность": np.mean([s.get("Креативность", 0) for s in all_scores]),
|
131 |
+
"Разнообразие": np.mean([s.get("Разнообразие", 0) for s in all_scores]),
|
132 |
+
"Релевантность": np.mean([s.get("Релевантность", 0) for s in all_scores])
|
133 |
+
}
|
134 |
+
final_scores["Среднее"] = np.mean(list(final_scores.values()))
|
135 |
+
|
136 |
+
return final_scores, "\n\n".join(all_texts)
|
137 |
+
|
138 |
+
def _create_evaluation_prompt(self, original_prompt: str, response: str) -> List[str]:
|
139 |
+
"""Create multiple evaluation prompts"""
|
140 |
+
prompts = []
|
141 |
+
prompts.append(EvaluationPrompts.get_first_check(original_prompt, response))
|
142 |
+
prompts.append(EvaluationPrompts.get_second_check(original_prompt, response))
|
143 |
+
prompts.append(EvaluationPrompts.get_third_check(original_prompt, response))
|
144 |
+
return prompts
|
145 |
+
|
146 |
+
def _parse_evaluation_scores(self, evaluation_text: str) -> Dict[str, float]:
|
147 |
+
"""Parse evaluation text into scores dictionary"""
|
148 |
+
scores = {}
|
149 |
+
for line in evaluation_text.strip().split('\n'):
|
150 |
+
if ':' in line:
|
151 |
+
parts = line.split(':')
|
152 |
+
if len(parts) >= 2:
|
153 |
+
metric, score_text = parts[0], ':'.join(parts[1:])
|
154 |
+
try:
|
155 |
+
score_text = score_text.strip()
|
156 |
+
score = float(''.join(c for c in score_text if c.isdigit() or c == '.'))
|
157 |
+
scores[metric.strip()] = score
|
158 |
+
except ValueError:
|
159 |
+
continue
|
160 |
+
|
161 |
+
if scores:
|
162 |
+
scores['Среднее'] = np.mean([v for k, v in scores.items() if k != 'Среднее'])
|
163 |
+
|
164 |
+
return scores
|
165 |
+
|
166 |
+
def evaluate_dataset(self, df: pd.DataFrame, prompt_col: str, answer_col: str) -> pd.DataFrame:
|
167 |
+
"""Evaluate all responses in the dataset"""
|
168 |
+
evaluations = []
|
169 |
+
eval_answers = []
|
170 |
+
|
171 |
+
total_batches = (len(df) + self.config.batch_size - 1) // self.config.batch_size
|
172 |
+
|
173 |
+
for i in range(0, len(df), self.config.batch_size):
|
174 |
+
batch = df.iloc[i:i+self.config.batch_size]
|
175 |
+
|
176 |
+
with tqdm(batch.iterrows(), total=len(batch),
|
177 |
+
desc=f"Batch {i//self.config.batch_size + 1}/{total_batches}") as pbar:
|
178 |
+
for _, row in pbar:
|
179 |
+
try:
|
180 |
+
scores, eval_text = self.evaluate_single_response(
|
181 |
+
str(row[prompt_col]),
|
182 |
+
str(row[answer_col])
|
183 |
+
)
|
184 |
+
evaluations.append(scores)
|
185 |
+
eval_answers.append(eval_text)
|
186 |
+
except Exception as e:
|
187 |
+
print(f"Error processing row {_}: {str(e)}")
|
188 |
+
evaluations.append({
|
189 |
+
"Креативность": 0,
|
190 |
+
"Разнообразие": 0,
|
191 |
+
"Релевантность": 0,
|
192 |
+
"Среднее": 0
|
193 |
+
})
|
194 |
+
eval_answers.append("Error in evaluation")
|
195 |
+
|
196 |
+
time.sleep(2)
|
197 |
+
|
198 |
+
time.sleep(10)
|
199 |
+
|
200 |
+
return self._create_evaluation_dataframe(df, evaluations, eval_answers)
|
201 |
+
|
202 |
+
def _create_evaluation_dataframe(self,
|
203 |
+
original_df: pd.DataFrame,
|
204 |
+
evaluations: List[Dict],
|
205 |
+
eval_answers: List[str]) -> pd.DataFrame:
|
206 |
+
score_df = pd.DataFrame(evaluations)
|
207 |
+
df = original_df.copy()
|
208 |
+
df['gemini_eval_answer'] = eval_answers
|
209 |
+
return pd.concat([df, score_df], axis=1)
|
210 |
+
|
211 |
+
|
212 |
+
class StabilityEvaluator:
|
213 |
+
def __init__(self, model_name='paraphrase-MiniLM-L6-v2'):
|
214 |
+
self.model = SentenceTransformer(model_name)
|
215 |
+
|
216 |
+
def calculate_similarity(self, prompts, outputs):
|
217 |
+
prompt_embeddings = self.model.encode(prompts)
|
218 |
+
output_embeddings = self.model.encode(outputs)
|
219 |
+
|
220 |
+
similarities = cosine_similarity(prompt_embeddings, output_embeddings)
|
221 |
+
|
222 |
+
stability_coefficients = np.diag(similarities)
|
223 |
+
|
224 |
+
return {
|
225 |
+
'stability_score': np.mean(stability_coefficients) * 100, # Scale to 0-100
|
226 |
+
'stability_std': np.std(stability_coefficients) * 100,
|
227 |
+
'individual_similarities': stability_coefficients
|
228 |
+
}
|
229 |
+
|
230 |
+
def evaluate_dataset(self, df, prompt_col='rus_prompt'):
|
231 |
+
"""Evaluate stability for multiple answer columns"""
|
232 |
+
results = {}
|
233 |
+
|
234 |
+
# Find columns ending with '_answers'
|
235 |
+
answer_columns = [col for col in df.columns if col.endswith('_answers')]
|
236 |
+
|
237 |
+
for column in answer_columns:
|
238 |
+
model_name = column.replace('_answers', '')
|
239 |
+
results[model_name] = self.calculate_similarity(
|
240 |
+
df[prompt_col].tolist(),
|
241 |
+
df[column].tolist()
|
242 |
+
)
|
243 |
+
|
244 |
+
return results
|
245 |
+
|
246 |
+
|
247 |
+
class BenchmarkEvaluator:
|
248 |
+
def __init__(self, gemini_api_key):
|
249 |
+
"""Initialize both evaluators"""
|
250 |
+
self.creative_evaluator = ResponseEvaluator(
|
251 |
+
EvaluationConfig(api_key=gemini_api_key)
|
252 |
+
)
|
253 |
+
self.stability_evaluator = StabilityEvaluator()
|
254 |
+
|
255 |
+
def evaluate_model(self, df, model_name, prompt_col='rus_prompt'):
|
256 |
+
"""Evaluate a single model's responses"""
|
257 |
+
answer_col = f"{model_name}_answers"
|
258 |
+
|
259 |
+
if answer_col not in df.columns:
|
260 |
+
raise ValueError(f"Column {answer_col} not found in dataframe")
|
261 |
+
|
262 |
+
print(f"Evaluating creativity for {model_name}...")
|
263 |
+
creative_df = self.creative_evaluator.evaluate_dataset(df, prompt_col, answer_col)
|
264 |
+
|
265 |
+
print(f"Evaluating stability for {model_name}...")
|
266 |
+
stability_results = self.stability_evaluator.calculate_similarity(
|
267 |
+
df[prompt_col].tolist(),
|
268 |
+
df[answer_col].tolist()
|
269 |
+
)
|
270 |
+
|
271 |
+
creative_score = creative_df["Среднее"].mean()
|
272 |
+
stability_score = stability_results['stability_score']
|
273 |
+
combined_score = (creative_score + stability_score) / 2
|
274 |
+
|
275 |
+
results = {
|
276 |
+
'model': model_name,
|
277 |
+
'creativity_score': creative_score,
|
278 |
+
'stability_score': stability_score,
|
279 |
+
'combined_score': combined_score,
|
280 |
+
'creative_details': {
|
281 |
+
'creativity': creative_df["Креативность"].mean(),
|
282 |
+
'diversity': creative_df["Разнообразие"].mean(),
|
283 |
+
'relevance': creative_df["Релевантность"].mean(),
|
284 |
+
},
|
285 |
+
'stability_details': stability_results
|
286 |
+
}
|
287 |
+
|
288 |
+
# Save detailed results
|
289 |
+
output_file = f'evaluated_responses_{model_name}.csv'
|
290 |
+
creative_df.to_csv(output_file, index=False)
|
291 |
+
print(f"Detailed results saved to {output_file}")
|
292 |
+
|
293 |
+
return results
|
294 |
+
|
295 |
+
def evaluate_all_models(self, df, models=None, prompt_col='rus_prompt'):
|
296 |
+
"""Evaluate multiple models from the dataframe"""
|
297 |
+
if models is None:
|
298 |
+
# Find all columns ending with _answers
|
299 |
+
answer_cols = [col for col in df.columns if col.endswith('_answers')]
|
300 |
+
models = [col.replace('_answers', '') for col in answer_cols]
|
301 |
+
|
302 |
+
results = []
|
303 |
+
for model in models:
|
304 |
+
try:
|
305 |
+
model_results = self.evaluate_model(df, model, prompt_col)
|
306 |
+
results.append(model_results)
|
307 |
+
print(f"Completed evaluation for {model}")
|
308 |
+
except Exception as e:
|
309 |
+
print(f"Error evaluating {model}: {str(e)}")
|
310 |
+
|
311 |
+
benchmark_df = pd.DataFrame(results)
|
312 |
+
benchmark_df.to_csv('benchmark_results.csv', index=False)
|
313 |
+
print("Benchmark completed. Results saved to benchmark_results.csv")
|
314 |
+
|
315 |
+
return benchmark_df
|
316 |
+
|
317 |
+
|
318 |
+
def evaluate_single_response(gemini_api_key, prompt, response, model_name="Test Model"):
|
319 |
+
"""Evaluate a single response for the UI"""
|
320 |
+
# Create a temporary dataframe
|
321 |
+
df = pd.DataFrame({
|
322 |
+
'rus_prompt': [prompt],
|
323 |
+
f'{model_name}_answers': [response]
|
324 |
+
})
|
325 |
+
|
326 |
+
evaluator = BenchmarkEvaluator(gemini_api_key)
|
327 |
+
|
328 |
+
try:
|
329 |
+
result = evaluator.evaluate_model(df, model_name)
|
330 |
+
|
331 |
+
# Format the result for displaying in UI
|
332 |
+
output = {
|
333 |
+
'Creativity Score': f"{result['creative_details']['creativity']:.2f}",
|
334 |
+
'Diversity Score': f"{result['creative_details']['diversity']:.2f}",
|
335 |
+
'Relevance Score': f"{result['creative_details']['relevance']:.2f}",
|
336 |
+
'Average Creative Score': f"{result['creativity_score']:.2f}",
|
337 |
+
'Stability Score': f"{result['stability_score']:.2f}",
|
338 |
+
'Combined Score': f"{result['combined_score']:.2f}"
|
339 |
+
}
|
340 |
+
|
341 |
+
return output
|
342 |
+
except Exception as e:
|
343 |
+
return {
|
344 |
+
'Error': str(e)
|
345 |
+
}
|
346 |
+
|
347 |
+
|
348 |
+
def create_gradio_interface():
|
349 |
+
"""Create Gradio interface for evaluation app"""
|
350 |
+
with gr.Blocks(title="Model Response Evaluator") as app:
|
351 |
+
gr.Markdown("# Model Response Evaluator")
|
352 |
+
gr.Markdown("Evaluate model responses for creativity, diversity, relevance, and stability.")
|
353 |
+
|
354 |
+
with gr.Tab("Single Response Evaluation"):
|
355 |
+
with gr.Row():
|
356 |
+
gemini_api_key = gr.Textbox(label="Gemini API Key", type="password")
|
357 |
+
|
358 |
+
with gr.Row():
|
359 |
+
with gr.Column():
|
360 |
+
prompt = gr.Textbox(label="Original Prompt", lines=3)
|
361 |
+
response = gr.Textbox(label="Model Response", lines=6)
|
362 |
+
model_name = gr.Textbox(label="Model Name", value="Test Model")
|
363 |
+
|
364 |
+
evaluate_btn = gr.Button("Evaluate Response")
|
365 |
+
|
366 |
+
with gr.Column():
|
367 |
+
output = gr.JSON(label="Evaluation Results")
|
368 |
+
|
369 |
+
evaluate_btn.click(
|
370 |
+
evaluate_single_response,
|
371 |
+
inputs=[gemini_api_key, prompt, response, model_name],
|
372 |
+
outputs=output
|
373 |
+
)
|
374 |
+
|
375 |
+
with gr.Tab("Batch Evaluation"):
|
376 |
+
with gr.Row():
|
377 |
+
gemini_api_key_batch = gr.Textbox(label="Gemini API Key", type="password")
|
378 |
+
|
379 |
+
with gr.Row():
|
380 |
+
csv_file = gr.File(label="Upload CSV with responses")
|
381 |
+
prompt_col = gr.Textbox(label="Prompt Column Name", value="rus_prompt")
|
382 |
+
models_input = gr.Textbox(label="Model names (comma-separated, leave blank for auto-detection)")
|
383 |
+
|
384 |
+
evaluate_batch_btn = gr.Button("Run Benchmark")
|
385 |
+
benchmark_output = gr.DataFrame(label="Benchmark Results")
|
386 |
+
|
387 |
+
def evaluate_batch(api_key, file, prompt_column, models_text):
|
388 |
+
try:
|
389 |
+
# Load the CSV file
|
390 |
+
file_path = file.name
|
391 |
+
df = pd.read_csv(file_path)
|
392 |
+
|
393 |
+
# Process model names if provided
|
394 |
+
models = None
|
395 |
+
if models_text.strip():
|
396 |
+
models = [m.strip() for m in models_text.split(',')]
|
397 |
+
|
398 |
+
# Run the evaluation
|
399 |
+
evaluator = BenchmarkEvaluator(api_key)
|
400 |
+
results = evaluator.evaluate_all_models(df, models, prompt_column)
|
401 |
+
|
402 |
+
return results
|
403 |
+
except Exception as e:
|
404 |
+
return pd.DataFrame({'Error': [str(e)]})
|
405 |
+
|
406 |
+
evaluate_batch_btn.click(
|
407 |
+
evaluate_batch,
|
408 |
+
inputs=[gemini_api_key_batch, csv_file, prompt_col, models_input],
|
409 |
+
outputs=benchmark_output
|
410 |
+
)
|
411 |
+
|
412 |
+
return app
|
413 |
+
|
414 |
+
|
415 |
+
def main():
|
416 |
+
parser = argparse.ArgumentParser(description="Model Response Evaluator")
|
417 |
+
parser.add_argument("--gemini_api_key", type=str, help="Gemini API Key", default=os.environ.get("GEMINI_API_KEY"))
|
418 |
+
parser.add_argument("--input_file", type=str, help="Input CSV file with model responses")
|
419 |
+
parser.add_argument("--models", type=str, help="Comma-separated list of model names to evaluate")
|
420 |
+
parser.add_argument("--prompt_col", type=str, default="rus_prompt", help="Column name containing prompts")
|
421 |
+
parser.add_argument("--web", action="store_true", help="Launch web interface")
|
422 |
+
|
423 |
+
args = parser.parse_args()
|
424 |
+
|
425 |
+
if args.web:
|
426 |
+
app = create_gradio_interface()
|
427 |
+
app.launch(share=True)
|
428 |
+
elif args.input_file:
|
429 |
+
if not args.gemini_api_key:
|
430 |
+
print("Error: Gemini API key is required. Set GEMINI_API_KEY environment variable or pass --gemini_api_key")
|
431 |
+
return
|
432 |
+
|
433 |
+
df = pd.read_csv(args.input_file)
|
434 |
+
models = None
|
435 |
+
if args.models:
|
436 |
+
models = [m.strip() for m in args.models.split(',')]
|
437 |
+
|
438 |
+
evaluator = BenchmarkEvaluator(args.gemini_api_key)
|
439 |
+
evaluator.evaluate_all_models(df, models, args.prompt_col)
|
440 |
+
else:
|
441 |
+
print("Error: Either --input_file or --web argument is required")
|
442 |
+
print("Run with --help for usage information")
|
443 |
+
|
444 |
+
|
445 |
+
if __name__ == "__main__":
|
446 |
+
main()
|