File size: 11,088 Bytes
34c7716 a6aa98d 34c7716 279a332 ae4bb43 5e3d086 3827853 a6aa98d 140aeb5 a2ef80f 140aeb5 34c7716 140aeb5 b0bf2ab 34c7716 a6aa98d 34c7716 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import gradio as gr
from model import models
from multit2i import (load_models, infer_fn, infer_rand_fn, save_gallery,
change_model, warm_model, get_model_info_md, loaded_models,
get_positive_prefix, get_positive_suffix, get_negative_prefix, get_negative_suffix,
get_recom_prompt_type, set_recom_prompt_preset, get_tag_type, randomize_seed, translate_to_en)
import os
# Поле для HF_TOKEN
hf_token_input = gr.Textbox(label="Введите HF Token", type="password", interactive=True)
def set_hf_token(hf_token):
"""Функция для установки HF_TOKEN и проверки его активации"""
if hf_token:
os.environ["HF_TOKEN"] = hf_token # Устанавливаем токен в переменные окружения
return f"✅ HF_TOKEN установлен!", gr.update(value=hf_token, interactive=True)
else:
return "❌ Токен не введен!", gr.update(value="", interactive=True)
# Кнопка подтверждения токена
confirm_token = gr.Button("Активировать HF_TOKEN")
# Поле для отображения статуса
token_status = gr.Markdown("🔴 HF_TOKEN не установлен")
# Подключаем обработчик кнопки
confirm_token.click(set_hf_token, inputs=[hf_token_input], outputs=[token_status, hf_token_input])
# Вставляем эти элементы в твой UI
with gr.Blocks(theme="NoCrypt/miku@>=1.2.2") as demo:
with gr.Tab("Settings"):
gr.Markdown("### Настройки токена Hugging Face")
hf_token_input.render() # Поле ввода
confirm_token.render() # Кнопка активации
token_status.render() # Статус токена
# Здесь твой код UI (его менять не нужно)
# ...
max_images = 8
MAX_SEED = 2**32-1
load_models(models)
css = """
.model_info { text-align: center; }
.output { width=112px; height=112px; max_width=112px; max_height=112px; !important; }
.gallery { min_width=512px; min_height=512px; max_height=1024px; !important; }
"""
with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
with gr.Tab("Image Generator"):
with gr.Row():
with gr.Column(scale=10):
with gr.Group():
prompt = gr.Text(label="Prompt", lines=2, max_lines=8, placeholder="1girl, solo, ...", show_copy_button=True)
with gr.Accordion("Advanced options", open=False):
neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="")
with gr.Row():
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=2048, step=32, value=0)
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=2048, step=32, value=0)
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
with gr.Row():
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
recom_prompt_preset = gr.Radio(label="Set Presets", choices=get_recom_prompt_type(), value="Common")
with gr.Row():
positive_prefix = gr.CheckboxGroup(label="Use Positive Prefix", choices=get_positive_prefix(), value=[])
positive_suffix = gr.CheckboxGroup(label="Use Positive Suffix", choices=get_positive_suffix(), value=["Common"])
negative_prefix = gr.CheckboxGroup(label="Use Negative Prefix", choices=get_negative_prefix(), value=[])
negative_suffix = gr.CheckboxGroup(label="Use Negative Suffix", choices=get_negative_suffix(), value=["Common"])
with gr.Row():
image_num = gr.Slider(label="Number of images", minimum=1, maximum=max_images, value=1, step=1, interactive=True, scale=2)
trans_prompt = gr.Button(value="Translate 📝", variant="secondary", size="sm", scale=2)
clear_prompt = gr.Button(value="Clear 🗑️", variant="secondary", size="sm", scale=1)
with gr.Row():
run_button = gr.Button("Generate Image", variant="primary", scale=8)
random_button = gr.Button("Random Model 🎲", variant="secondary", scale=3)
stop_button = gr.Button('Stop', interactive=False, variant="stop", scale=1)
with gr.Group():
model_name = gr.Dropdown(label="Select Model", choices=list(loaded_models.keys()), value=list(loaded_models.keys())[0], allow_custom_value=True)
model_info = gr.Markdown(value=get_model_info_md(list(loaded_models.keys())[0]), elem_classes="model_info")
with gr.Column(scale=10):
with gr.Group():
with gr.Row():
output = [gr.Image(label='', elem_classes="output", type="filepath", format="png",
show_download_button=True, show_share_button=False, show_label=False,
interactive=False, min_width=80, visible=True, width=112, height=112) for _ in range(max_images)]
with gr.Group():
results = gr.Gallery(label="Gallery", elem_classes="gallery", interactive=False, show_download_button=True, show_share_button=False,
container=True, format="png", object_fit="cover", columns=2, rows=2)
image_files = gr.Files(label="Download", interactive=False)
clear_results = gr.Button("Clear Gallery / Download 🗑️", variant="secondary")
with gr.Column():
examples = gr.Examples(
examples = [
["souryuu asuka langley, 1girl, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors"],
["sailor moon, magical girl transformation, sparkles and ribbons, soft pastel colors, crescent moon motif, starry night sky background, shoujo manga style"],
["kafuu chino, 1girl, solo"],
["1girl"],
["beautiful sunset"],
],
inputs=[prompt],
cache_examples=False,
)
with gr.Tab("PNG Info"):
def extract_exif_data(image):
if image is None: return ""
try:
metadata_keys = ['parameters', 'metadata', 'prompt', 'Comment']
for key in metadata_keys:
if key in image.info:
return image.info[key]
return str(image.info)
except Exception as e:
return f"Error extracting metadata: {str(e)}"
with gr.Row():
with gr.Column():
image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"])
with gr.Column():
result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99)
image_metadata.change(
fn=extract_exif_data,
inputs=[image_metadata],
outputs=[result_metadata],
)
gr.Markdown(
f"""This demo was created in reference to the following demos.<br>
[Nymbo/Flood](https://huggingface.co/spaces/Nymbo/Flood),
[Yntec/ToyWorldXL](https://huggingface.co/spaces/Yntec/ToyWorldXL),
[Yntec/Diffusion80XX](https://huggingface.co/spaces/Yntec/Diffusion80XX).
"""
)
gr.DuplicateButton(value="Duplicate Space")
gr.Markdown(f"Just a few edits to *model.py* are all it takes to complete your own collection.")
gr.on(triggers=[run_button.click, prompt.submit, random_button.click], fn=lambda: gr.update(interactive=True), inputs=None, outputs=stop_button, show_api=False)
model_name.change(change_model, [model_name], [model_info], queue=True, show_api=True)\
.success(warm_model, [model_name], None, queue=True, show_api=True)
for i, o in enumerate(output):
img_i = gr.Number(i, visible=False)
image_num.change(lambda i, n: gr.update(visible = (i < n)), [img_i, image_num], o, show_api=True)
gen_event = gr.on(triggers=[run_button.click, prompt.submit],
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4: infer_fn(m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4) if (i < n) else None,
inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg, seed,
positive_prefix, positive_suffix, negative_prefix, negative_suffix],
outputs=[o], queue=True, show_api=False) # Be sure to delete ", queue=False" when activating the stop button
gen_event2 = gr.on(triggers=[random_button.click],
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4: infer_rand_fn(m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4) if (i < n) else None,
inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg, seed,
positive_prefix, positive_suffix, negative_prefix, negative_suffix],
outputs=[o], queue=True, show_api=False) # Be sure to delete ", queue=False" when activating the stop button
o.change(save_gallery, [o, results], [results, image_files], show_api=False)
stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event, gen_event2], show_api=False)
clear_prompt.click(lambda: (None, None), None, [prompt, neg_prompt], queue=True, show_api=True)
clear_results.click(lambda: (None, None), None, [results, image_files], queue=True, show_api=True)
recom_prompt_preset.change(set_recom_prompt_preset, [recom_prompt_preset],
[positive_prefix, positive_suffix, negative_prefix, negative_suffix], queue=True, show_api=True)
seed_rand.click(randomize_seed, None, [seed], queue=True, show_api=True)
trans_prompt.click(translate_to_en, [prompt], [prompt], queue=True, show_api=True)\
.then(translate_to_en, [neg_prompt], [neg_prompt], queue=True, show_api=True)
demo.queue(default_concurrency_limit=240, max_size=240)
demo.launch(max_threads=400, ssr_mode=True)
# https://github.com/gradio-app/gradio/issues/6339
demo.queue(concurrency_count=50)
demo.launch() |