Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,508 Bytes
b9db1f0 5f6acb3 e6f62c0 b9db1f0 41e54f7 16f9d37 e261a15 e6f62c0 e261a15 5fb219a f2e0937 41e54f7 b9db1f0 41e54f7 396bf0d f82aec6 7754c6e f82aec6 16f9d37 5f6acb3 047977b 5f6acb3 6e0a272 047977b 5f6acb3 aa756b6 5f6acb3 aa756b6 5f6acb3 fb1727d aa756b6 fb1727d aa756b6 fb1727d 71eb119 aa756b6 162eca4 71eb119 16f9d37 fb1727d 16f9d37 7754c6e b9db1f0 5fb219a 4959f0f f2e0937 b9db1f0 4959f0f b9db1f0 4959f0f f2e0937 41e54f7 7754c6e 5fb219a b9db1f0 2404688 b9db1f0 41e54f7 5fb219a b2d2b72 5fb219a b2d2b72 5fb219a b2d2b72 5fb219a b2d2b72 5fb219a b2d2b72 5fb219a b2d2b72 5fb219a 1199fc8 e261a15 5fb219a e6f62c0 1199fc8 5fb219a e6f62c0 e261a15 e6f62c0 e261a15 e6f62c0 463338d e261a15 463338d e261a15 9370c85 e261a15 463338d e261a15 9370c85 e261a15 e6f62c0 1199fc8 b9db1f0 b2d2b72 1199fc8 463338d e6f62c0 b9db1f0 e6f62c0 b9db1f0 4d5f372 5fb219a 4d5f372 b9db1f0 fca362d b9db1f0 fca362d b9db1f0 fca362d 41e54f7 e6f62c0 41e54f7 b9db1f0 4d5f372 b9db1f0 3a4341d b9db1f0 3a4341d b9db1f0 3a4341d b9db1f0 3a4341d e6f62c0 3a4341d e261a15 3a4341d e6f62c0 3a4341d e6f62c0 1199fc8 b9db1f0 41e54f7 b9db1f0 e6f62c0 1199fc8 b9db1f0 e6f62c0 41e54f7 b9db1f0 e6f62c0 b9db1f0 7754c6e f82aec6 b9db1f0 e6f62c0 4d5f372 3a4341d c60edcb 6270206 3a4341d c6a4fdb e6f62c0 6270206 3a4341d b9db1f0 5fb219a e6f62c0 2a28cee c60edcb e6f62c0 c60edcb e6f62c0 1199fc8 3a4341d f9231bd 6270206 3a4341d b9db1f0 5fb219a b9db1f0 1199fc8 5fb219a b9db1f0 3a4341d b9db1f0 5fb219a e6f62c0 b9db1f0 409b716 b9db1f0 c60edcb f9231bd b9db1f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
import os
import zipfile
import json
from dotenv import load_dotenv
from groq import Groq
import chromadb
from chromadb.config import Settings
import torch
from sentence_transformers import CrossEncoder
import gradio as gr
from datetime import datetime
from huggingface_hub import hf_hub_download, HfApi, CommitOperationAdd
from pathlib import Path
import tempfile
import spaces # for ZeroGPU
import requests # for IP geolocation
import time
# Load environment variables and initialize clients
load_dotenv()
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
client = Groq(api_key=GROQ_API_KEY)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Get the token from environment variables
hf_token = os.getenv("HF_TOKEN")
# Initialize global variables
chroma_client = None
collection = None
reranker = None
embedding_function = None
def load_chroma_db():
print("Using ChromaDB from Hugging Face dataset...")
# Download the zipped database from Hugging Face
zip_path = hf_hub_download(
repo_id="Mr-Geo/chroma_db",
filename="chroma_db.zip",
repo_type="dataset",
use_auth_token=hf_token
)
print(f"Downloaded database zip to: {zip_path}")
# Extract to a temporary directory
extract_dir = "/tmp" # This will create /tmp/chroma_db
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
print("Zip contents:", zip_ref.namelist())
zip_ref.extractall(extract_dir)
db_path = os.path.join(extract_dir, "chroma_db")
print(f"Using ChromaDB path: {db_path}")
print(f"Directory contents: {os.listdir(db_path)}")
db = chromadb.PersistentClient(
path=db_path,
settings=Settings(
anonymized_telemetry=False,
allow_reset=True,
is_persistent=True
)
)
# Debug: Print collections
collections = db.list_collections()
print("Available collections:", collections)
return db
# Check if running locally
if os.path.exists("./chroma_db/chroma.sqlite3"):
print("Using local ChromaDB setup...")
db = chromadb.PersistentClient(
path="./chroma_db",
settings=Settings(
anonymized_telemetry=False,
allow_reset=True,
is_persistent=True
)
)
else:
# Load from Hugging Face dataset
db = load_chroma_db()
def initialize_system_sync():
"""Initialize the system components without GPU decoration"""
global chroma_client, collection, reranker, embedding_function
# Add GPU diagnostics
print("\n=== GPU Diagnostics ===")
print(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"Current CUDA device: {torch.cuda.current_device()}")
print(f"Device name: {torch.cuda.get_device_name()}")
print(f"Device memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
print("=====================\n")
# Use the same ChromaDB client that was loaded from HF
chroma_client = db # Use the global db instance we created
# Initialize the embedding function with retries
max_retries = 3
retry_delay = 5 # seconds
for attempt in range(max_retries):
try:
print(f"\nAttempt {attempt + 1} of {max_retries} to initialize embedding function...")
embedding_function = chromadb.utils.embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="sentence-transformers/all-mpnet-base-v2",
device=DEVICE
)
break
except Exception as e:
print(f"Error initializing embedding function: {str(e)}")
if attempt < max_retries - 1:
print(f"Retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
else:
raise RuntimeError("Failed to initialize embedding function after multiple attempts")
# Get the collection
print("Getting collection...")
collection = chroma_client.get_collection(name="website_content", embedding_function=embedding_function)
print(f"Found {collection.count()} documents in collection")
# Initialize the reranker with retries
for attempt in range(max_retries):
try:
print(f"\nAttempt {attempt + 1} of {max_retries} to initialize reranker...")
reranker = CrossEncoder(
'cross-encoder/ms-marco-MiniLM-L-6-v2',
device=DEVICE,
max_length=512 # Add explicit max_length
)
if torch.cuda.is_available():
reranker.model.to('cuda')
print("Reranker moved to GPU")
break
except Exception as e:
print(f"Error initializing reranker: {str(e)}")
if attempt < max_retries - 1:
print(f"Retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
else:
raise RuntimeError("Failed to initialize reranker after multiple attempts")
@spaces.GPU(memory="40g")
def initialize_system():
"""GPU-decorated initialization for Gradio context"""
initialize_system_sync()
@spaces.GPU(memory="40g") # Add GPU decorator for get_context
def get_context(message):
global collection, reranker # Access global variables
results = collection.query(
query_texts=[message],
n_results=500,
include=["metadatas", "documents", "distances"]
)
print(f"\n=== Search Results ===")
print(f"Initial ChromaDB results found: {len(results['documents'][0])}")
# Rerank all results
rerank_pairs = [(message, doc) for doc in results['documents'][0]]
rerank_scores = reranker.predict(rerank_pairs)
# Create list of results with scores
all_results = []
url_chunks = {} # Group chunks by URL
# Group chunks by URL and store their scores
for score, doc, metadata in zip(rerank_scores, results['documents'][0], results['metadatas'][0]):
url = metadata['url']
if url not in url_chunks:
url_chunks[url] = []
url_chunks[url].append({'text': doc, 'metadata': metadata, 'score': score})
# For each URL, select the best chunks while maintaining diversity
for url, chunks in url_chunks.items():
# Sort chunks for this URL by score
chunks.sort(key=lambda x: x['score'], reverse=True)
# Take up to 5 chunks per URL, but only if their scores are good
selected_chunks = []
for chunk in chunks[:5]: # 5 chunks per URL
# Only include if score is decent
if chunk['score'] > -10: # Increased threshold to ensure higher relevance
selected_chunks.append(chunk)
# Add selected chunks to final results
all_results.extend(selected_chunks)
# Sort all results by score for final ranking
all_results.sort(key=lambda x: x['score'], reverse=True)
# Take only top 20 results maximum
all_results = all_results[:20]
print(f"\nFinal results after reranking and filtering: {len(all_results)}")
if all_results:
print("\nTop Similarity Scores and URLs:")
for i, result in enumerate(all_results[:20], 1): # Show only top 20 in logs
print(f"{i}. Score: {result['score']:.4f} - URL: {result['metadata']['url']}")
print("=" * 50)
# Build context from filtered results
context = "\nRelevant Information:\n"
total_chars = 0
max_chars = 30000 # To ensure we don't exceed token limits
for result in all_results:
chunk_text = f"\nSource: {result['metadata']['url']}\n{result['text']}\n"
if total_chars + len(chunk_text) > max_chars:
break
context += chunk_text
total_chars += len(chunk_text)
print(f"\nFinal context length: {total_chars} characters")
return context
def get_ip_info(ip_address):
"""Get geolocation info for an IP address"""
if not ip_address:
return {"country": "Unknown", "city": "Unknown", "region": "Unknown"}
# Handle local/private IPs
if ip_address in ['127.0.0.1', 'localhost', '0.0.0.0'] or ip_address.startswith(('10.', '172.', '192.168.')):
return {"country": "Local Network", "city": "Local", "region": "Local"}
try:
# Add user-agent to be a good API citizen
headers = {
'User-Agent': 'BAS-Website-Chat/1.0'
}
response = requests.get(
f'https://ipapi.co/{ip_address}/json/',
headers=headers,
timeout=5 # 5 second timeout
)
if response.status_code == 200:
data = response.json()
# Check for error responses
if 'error' in data:
print(f"IP API error: {data.get('reason', 'Unknown error')}")
return {"country": "Unknown", "city": "Unknown", "region": "Unknown"}
return {
"country": data.get("country_name", "Unknown"),
"city": data.get("city", "Unknown"),
"region": data.get("region", "Unknown"),
"latitude": data.get("latitude"),
"longitude": data.get("longitude"),
"timezone": data.get("timezone"),
"org": data.get("org")
}
else:
print(f"IP API returned status code: {response.status_code}")
except requests.exceptions.Timeout:
print(f"Timeout getting IP info for {ip_address}")
except requests.exceptions.RequestException as e:
print(f"Error getting IP info: {str(e)}")
except Exception as e:
print(f"Unexpected error getting IP info: {str(e)}")
return {"country": "Unknown", "city": "Unknown", "region": "Unknown"}
def log_conversation(timestamp, user_message, assistant_response, model_name, context, error=None, client_ip=None):
"""Log conversation details to JSON file - local directory or HuggingFace Dataset repository"""
# Get IP geolocation
ip_info = get_ip_info(client_ip) if client_ip else {"country": "Unknown", "city": "Unknown"}
# Create a log entry
log_entry = {
"timestamp": timestamp,
"model_name": model_name,
"user_message": user_message,
"assistant_response": assistant_response,
"context": context,
"error": str(error) if error else None,
"client_ip": client_ip,
"location": ip_info
}
# Check if running on Hugging Face Spaces
is_hf_space = os.getenv('SPACE_ID') is not None
current_date = datetime.now().strftime("%Y-%m-%d")
if is_hf_space:
try:
# Initialize Hugging Face API
api = HfApi(token=hf_token)
filename = f"conversation_logs/daily_{current_date}.json"
# Check if the dataset repository exists, if not create it
try:
api.repo_info(repo_id="Mr-Geo/chroma_db", repo_type="dataset")
except Exception:
api.create_repo(
repo_id="Mr-Geo/chroma_db",
repo_type="dataset",
private=True
)
try:
# Try to download existing file
existing_file = api.hf_hub_download(
repo_id="Mr-Geo/chroma_db",
filename=filename,
repo_type="dataset",
token=hf_token
)
# Load existing logs
with open(existing_file, 'r', encoding='utf-8') as f:
logs = json.load(f)
except Exception:
# File doesn't exist yet, start with empty list
logs = []
# Append new log entry
logs.append(log_entry)
# Create temporary file with updated logs
with tempfile.NamedTemporaryFile(mode='w', encoding='utf-8', delete=False, suffix='.json') as temp_file:
json.dump(logs, temp_file, ensure_ascii=False, indent=2)
temp_file_path = temp_file.name
# Push to the dataset repository
operations = [
CommitOperationAdd(
path_in_repo=filename,
path_or_fileobj=temp_file_path
)
]
api.create_commit(
repo_id="Mr-Geo/chroma_db",
repo_type="dataset",
operations=operations,
commit_message=f"Update conversation logs for {current_date}"
)
# Clean up temporary file
os.unlink(temp_file_path)
except Exception as e:
print(f"\nβ οΈ Error logging conversation to HuggingFace: {str(e)}")
else:
# Local environment - save to file
try:
log_dir = Path("logs")
log_dir.mkdir(exist_ok=True)
log_file = log_dir / f"conversation_log_{current_date}.json"
# Load existing logs if file exists
if log_file.exists():
with open(log_file, 'r', encoding='utf-8') as f:
logs = json.load(f)
else:
logs = []
# Append new log entry
logs.append(log_entry)
# Write updated logs
with open(log_file, 'w', encoding='utf-8') as f:
json.dump(logs, f, ensure_ascii=False, indent=2)
except Exception as e:
print(f"\nβ οΈ Error logging conversation locally: {str(e)}")
def chat_response(message, history, model_name, request: gr.Request):
"""Chat response function for Gradio interface"""
try:
# Get client IP address with better proxy handling
client_ip = None
if request:
# Try to get real IP from headers in order of reliability
client_ip = (
request.headers.get('X-Forwarded-For', '').split(',')[0].strip() or
request.headers.get('X-Real-IP') or
request.headers.get('CF-Connecting-IP') or # Cloudflare
request.client.host
)
print(f"\nClient IP detected: {client_ip}")
print(f"Request headers: {request.headers}")
# Append 'at BAS' to the user's message
message += " at BAS"
# Get context and timestamp
context = get_context(message)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Build messages list starting with a clean system message for history
messages = []
# Add history first without context
if history:
for h in history:
messages.append({"role": h["role"], "content": str(h["content"])})
# Add current message
messages.append({"role": "user", "content": str(message)})
# Insert system message with context at the beginning
messages.insert(0, {
"role": "system",
"content": f"""You are an AI assistant for the British Antarctic Survey (BAS). Your responses should be based ONLY on the context provided below.
IMPORTANT INSTRUCTIONS:
1. ALWAYS thoroughly check the provided context before saying you don't have information.
2. If you find ANY relevant information in the context, use it - even if it's not complete.
3. If you find time-sensitive information in the context, share it - it's current as of when the context was retrieved.
4. When citing sources, you MUST always provide the URL source after the relevant information, like this:
Here is some information about BAS.
Source: https://www.bas.ac.uk/example
5. Do not say things like:
- "I don't have access to real-time information."
- "I cannot browse the internet."
Instead, share what IS in the context, and only say "I don't have enough information" if you truly find nothing relevant to the user's question.
6. Keep responses:
- With emojis where appropriate.
- Without duplicate source citations.
- Based on the context below.
Current Time: {timestamp}
Context: {context}"""
})
print("\n\n==========START Contents of the message being sent to the LLM==========\n")
print(messages)
print("\n\n==========END Contents of the message being sent to the LLM==========\n")
# Get response
response = ""
completion = client.chat.completions.create(
model=model_name,
messages=messages,
temperature=0.7,
max_tokens=2500,
top_p=0.95,
stream=True
)
print("\n=== LLM Response Start ===")
thinking_process = ""
final_response = ""
is_thinking = False
for chunk in completion:
if chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
print(content, end='', flush=True)
# Check for thinking tags
if "<think>" in content:
is_thinking = True
continue
elif "</think>" in content:
is_thinking = False
# Create collapsible thinking section
if thinking_process:
final_response = f"""<details>
<summary>π€ <u>Click to see 'thinking' process</u></summary>
<div style="font-size: 0.9em;">
<i>π{thinking_process}</i>
</div>
<hr style="margin: 0; height: 2px;">
</details>
{final_response}"""
continue
# Append content to appropriate section
if is_thinking:
thinking_process += content
else:
final_response += content
yield final_response
log_conversation(timestamp, message, final_response, model_name, context, client_ip=client_ip)
print("\n=== LLM Response End ===\n")
except Exception as e:
error_msg = f"An error occurred: {str(e)}"
print(f"\nERROR: {error_msg}")
log_conversation(datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
message, error_msg, model_name, context, error=e, client_ip=client_ip)
yield error_msg
if __name__ == "__main__":
try:
print("\n=== Starting Application ===")
Path("logs").mkdir(exist_ok=True)
print("Initialising ChromaDB...")
initialize_system_sync() # Use the synchronous version for initial setup
if collection is None:
raise RuntimeError("Failed to initialize collection")
print(f"Found {collection.count()} documents in collection")
print("\nCreating Gradio interface...")
demo = gr.Blocks()
with demo:
gr.Markdown("# πβοΈBritish Antarctic Survey Website Chat Assistant π§π€")
gr.Markdown("Accesses text data from 11,982 unique BAS URLs (6GB [Vector Database](https://huggingface.co/datasets/Mr-Geo/chroma_db/tree/main/) π extracted 02/02/2025) Created with open source technologies: [Gradio](https://gradio.app) for UI π¨, [Hugging Face](https://huggingface.co/) models for embeddings β‘, and [Chroma](https://www.trychroma.com/) as the vector database π»")
model_selector = gr.Dropdown(
choices=[
("Llama 3.3 - Versatile π¦β¨", "llama-3.3-70b-versatile"),
("Llama 4 - Latest π", "meta-llama/llama-4-scout-17b-16e-instruct"),
("Mistral Saba - Balanced βοΈ", "mistral-saba-24b"),
("DeepSeek - Reasoning π§ π", "deepseek-r1-distill-llama-70b"),
("Compound Beta - Agentic & Live Search π οΈπ", "compound-beta")
],
value="llama-3.3-70b-versatile",
label="Select AI Large Language Model π€",
info="Please try out the other AI models to use for responses (all LLMs are running on [GroqCloud](https://groq.com/groqrack/)) - Compound Beta includes live internet searching! π"
)
chatbot = gr.Chatbot(height=600, type="messages")
with gr.Row(equal_height=True):
msg = gr.Textbox(
placeholder="What would you like to know about BAS? Or choose an example question...β",
label="Your question π€",
show_label=True,
container=True,
submit_btn=True,
scale=20,
)
clear = gr.Button("Clear Chat History π§Ή (Click here if any errors are returned and ask question again)")
gr.Examples(
examples=[
"What research stations does BAS operate in Antarctica? ποΈ",
"Tell me about the RRS Sir David Attenborough π’",
"What are the latest climate research findings from BAS? π",
"What current projects is BAS working on in Antarctica? π¬",
"What's the latest news about BAS's Antarctic operations? π°",
"What's happening at Rothera Research Station right now? π‘οΈ"
],
inputs=msg,
)
def user(user_message, history):
history = history or []
return "", history + [{"role": "user", "content": user_message}]
def bot(history, model_name, request: gr.Request):
history = history or []
if history and history[-1]["role"] == "user":
user_message = history[-1]["content"]
history_without_last = history[:-1]
for response in chat_response(user_message, history_without_last, model_name, request):
history_with_response = history + [{"role": "assistant", "content": response}]
yield history_with_response
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, [chatbot, model_selector], chatbot
)
clear.click(lambda: [], None, chatbot, queue=False) # Updated to return empty list
gr.Markdown("<footer style='text-align: center; margin-top: 5px;'>π€ AI-generated content; while the Chat Assistant strives for accuracy, errors may occur; please thoroughly check critical information π€<br>β οΈ <strong><u>Disclaimer: This system was not produced by the British Antarctic Survey (BAS) and AI generated output does not reflect the views or opinions of BAS</u></strong> β οΈ <br>(just a bit of fun :D)</footer>")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_api=False
)
except Exception as e:
print(f"\nERROR: {str(e)}")
raise |