Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,053 Bytes
adec644 2c1f9fb 4af037d adec644 4af037d a9f5d5e 4af037d adec644 4af037d 2c1f9fb adec644 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
title: BAS Website AI
emoji: π
colorFrom: indigo
colorTo: blue
sdk: gradio
sdk_version: 5.25.2
app_file: app.py
pinned: false
short_description: LLM RAG Web scraper on Hugging Face Spaces
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
## Overview
This project implements a RAG (Retrieval-Augmented Generation) system that allows users to chat with website content using LLMs. It consists of two main components:
1. **Web Scraper**: A robust scraping system that:
- Crawls websites systematically with error handling and retry logic
- Processes and chunks content for optimal retrieval
- Stores data in ChromaDB with embeddings
- Supports checkpoint-based resumption of scraping
2. **Chat Interface**: A Gradio-based chat application that:
- Uses Groq's LLM API for responses
- Implements semantic search with ChromaDB
- Features cross-encoder reranking for improved result relevance
- Provides source citations for responses
## Key Features
- π Resumable web scraping with progress tracking
- πΎ Persistent vector storage using ChromaDB
- π Advanced retrieval with semantic search and reranking
- π€ Integration with Groq's LLM API
- π± User-friendly chat interface
- π Source attribution for responses
## Setup
1. Install dependencies:
```bash
pip install -r requirements.txt
```
2. Set up environment variables:
```
GROQ_API_KEY=your_groq_api_key
HF_TOKEN=your_huggingface_token
```
3. Run the scraper:
```bash
python scraper_app.py
```
- Use `--rescrape` flag for fresh start
4. Launch the chat interface:
```bash
python app.py
```
## Tools & Technologies
- ChromaDB for vector storage
- Sentence Transformers for embeddings
- Groq for LLM inference
- Gradio for web interface
- BeautifulSoup4 for web scraping
## Project Structure
- `app.py`: Main chat application
- `scraper.py`: Web scraping logic
- `scraper_app.py`: Scraper management
- `chroma_explorer.ipynb`: Database exploration notebook |