from transformers import AutoModelForCausalLM, AutoTokenizer import streamlit as st from transformers import AutoTokenizer, AutoModelWithLMHead import torch if torch.cuda.is_available(): device = torch.device("cuda") else: device = "cpu" tokenizer = AutoTokenizer.from_pretrained("salesken/content_generation_from_phrases") model = AutoModelWithLMHead.from_pretrained("salesken/content_generation_from_phrases").to(device) input_query=st.text_input("Enter the Blog Title") query = "<|startoftext|> " +"Create a blog about "+ input_query + " ~~" input_ids = tokenizer.encode(query.lower(), return_tensors='pt').to(device) sample_outputs = model.generate(input_ids, do_sample=True, num_beams=1, max_length=2560, temperature=0.9, top_k = 30, num_return_sequences=1) r = tokenizer.decode(sample_outputs[0], skip_special_tokens=True).split('||')[0] r = r.split(' ~~ ')[1] st.write(r)