Mojo3 commited on
Commit
f92ee23
·
1 Parent(s): e388831

bunch of changes

Browse files
app.py CHANGED
@@ -1,4 +1,200 @@
1
  import streamlit as st
 
 
 
 
 
 
 
 
 
 
2
 
3
- x = st.slider('Select a value')
4
- st.write(x, 'squared is', x * x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ from docx import Document
3
+ import os
4
+ from langchain_core.prompts import PromptTemplate
5
+ from transformers import AutoTokenizer, AutoModelForCausalLM
6
+ import torch
7
+ import time
8
+ from sentence_transformers import SentenceTransformer
9
+ from langchain.vectorstores import Chroma
10
+ from langchain.docstore.document import Document
11
+ from langchain_community.embeddings import HuggingFaceEmbeddings
12
 
13
+
14
+ docs_folder = "./converted_docs"
15
+
16
+
17
+ # Function to load .docx files from Google Drive folder
18
+ def load_docx_files_from_drive(drive_folder):
19
+ docx_files = [f for f in os.listdir(drive_folder) if f.endswith(".docx")]
20
+ documents = []
21
+
22
+ for file_name in docx_files:
23
+ file_path = os.path.join(drive_folder, file_name)
24
+ doc = Document(file_path)
25
+ content = "\n".join([p.text for p in doc.paragraphs if p.text.strip()])
26
+ documents.append(content)
27
+
28
+ return documents
29
+
30
+
31
+ # Load .docx files from Google Drive folder
32
+ documents = load_docx_files_from_drive(docs_folder)
33
+
34
+
35
+ def split_extracted_text_into_chunks(documents):
36
+ # List to hold all chunks
37
+ chunks = []
38
+
39
+ for doc_text in documents:
40
+ # Split the document text into lines
41
+ lines = doc_text.splitlines()
42
+
43
+ # Initialize variables for splitting
44
+ current_chunk = []
45
+ for line in lines:
46
+ # Check if the line starts with "File Name:"
47
+ if line.startswith("File Name:"):
48
+ # If there's a current chunk, save it before starting a new one
49
+ if current_chunk:
50
+ chunks.append("\n".join(current_chunk))
51
+ current_chunk = [] # Reset the current chunk
52
+
53
+ # Add the line to the current chunk
54
+ current_chunk.append(line)
55
+
56
+ # Add the last chunk for the current document
57
+ if current_chunk:
58
+ chunks.append("\n".join(current_chunk))
59
+
60
+ return chunks
61
+
62
+
63
+ # Split the extracted documents into chunks
64
+ chunks = split_extracted_text_into_chunks(documents)
65
+
66
+
67
+ def save_chunks_to_file(chunks, output_file_path):
68
+ # Open the file in write mode
69
+ with open(output_file_path, "w", encoding="utf-8") as file:
70
+ for i, chunk in enumerate(chunks, start=1):
71
+ # Write each chunk with a header for easy identification
72
+ file.write(f"Chunk {i}:\n")
73
+ file.write(chunk)
74
+ file.write("\n" + "=" * 50 + "\n")
75
+
76
+
77
+ # Path to save the chunks file
78
+ output_file_path = "./chunks_output.txt"
79
+
80
+ # Split the extracted documents into chunks
81
+ chunks = split_extracted_text_into_chunks(documents)
82
+
83
+ # Save the chunks to the file
84
+ save_chunks_to_file(chunks, output_file_path)
85
+
86
+
87
+ # Step 1: Load the model through LangChain's wrapper
88
+ embedding_model = HuggingFaceEmbeddings(
89
+ model_name="Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2"
90
+ )
91
+
92
+
93
+ # Step 2: Embed the chunks (now simplified)
94
+ def embed_chunks(chunks):
95
+ return [
96
+ {"chunk": chunk, "embedding": embedding_model.embed_query(chunk)}
97
+ for chunk in chunks
98
+ ]
99
+
100
+
101
+ embeddings = embed_chunks(chunks)
102
+
103
+
104
+ # Step 3: Prepare documents (unchanged)
105
+ def prepare_documents_for_chroma(embeddings):
106
+ return [
107
+ Document(page_content=entry["chunk"], metadata={"chunk_index": i})
108
+ for i, entry in enumerate(embeddings, start=1)
109
+ ]
110
+
111
+
112
+ documents = prepare_documents_for_chroma(embeddings)
113
+
114
+ # Step 4: Create Chroma store (fixed)
115
+ vectorstore = Chroma.from_documents(
116
+ documents=documents,
117
+ embedding=embedding_model, # Proper embedding object
118
+ persist_directory="./chroma_db", # Optional persistence
119
+ )
120
+
121
+
122
+ class RAGPipeline:
123
+ def __init__(self, vectorstore, model_name="CohereForAI/aya-expanse-8b", k=6):
124
+ self.vectorstore = vectorstore
125
+ self.model_name = model_name
126
+ self.k = k
127
+ self.retriever = self.vectorstore.as_retriever(
128
+ search_type="mmr", search_kwargs={"k": self.k}
129
+ )
130
+ self.prompt_template = PromptTemplate.from_template(self._get_template())
131
+
132
+ # Load model and tokenizer
133
+ self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
134
+ self.model = AutoModelForCausalLM.from_pretrained(
135
+ self.model_name, torch_dtype=torch.bfloat16, device_map="auto"
136
+ )
137
+
138
+ def _get_template(self):
139
+ return """\
140
+ <s>[INST] <<SYS>>
141
+ أنت مساعد مفيد يقدم إجابات باللغة العربية بناءً على السياق المقدم.
142
+ - أجب فقط باللغة العربية
143
+ - إذا لم تجد إجابة في السياق، قل أنك لا تعرف
144
+ - كن دقيقاً وواضحاً في إجاباتك
145
+ <</SYS>>
146
+
147
+ السياق: {context}
148
+
149
+ السؤال: {question}
150
+ الإجابة: [/INST]\
151
+ """
152
+
153
+ def generate_response(self, question):
154
+ retrieved_docs = self._retrieve_documents(question)
155
+ prompt = self._create_prompt(retrieved_docs, question)
156
+ response = self._generate_response(prompt)
157
+ return response
158
+
159
+ def _retrieve_documents(self, question):
160
+ start = time.time()
161
+ retrieved_docs = self.retriever.invoke(question)
162
+ result = {f"doc_{i}": doc.page_content for i, doc in enumerate(retrieved_docs)}
163
+ end = time.time()
164
+ time_lapsed = end - start
165
+ print(f"Time lapsed in Retreival: {time_lapsed}")
166
+ return result
167
+
168
+ def _create_prompt(self, docs, question):
169
+ return self.prompt_template.format(context=docs, question=question)
170
+
171
+ def _generate_response(self, prompt):
172
+ inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
173
+
174
+ start = time.time()
175
+ outputs = self.model.generate(
176
+ inputs.input_ids,
177
+ max_new_tokens=1024,
178
+ temperature=0.7,
179
+ top_p=0.9,
180
+ do_sample=True,
181
+ pad_token_id=self.tokenizer.eos_token_id,
182
+ )
183
+ end = time.time()
184
+ time_lapsed = end - start
185
+ print(f"Time lapsed in Generation: {time_lapsed}")
186
+
187
+ response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
188
+ # Extract only the assistant's response after [/INST]
189
+ return response.split("[/INST]")[-1].strip()
190
+
191
+
192
+ rag_pipeline = RAGPipeline(vectorstore)
193
+
194
+
195
+ question = st.text_area("أدخل سؤالك هنا")
196
+ if st.button("Generate Answer"):
197
+ response = rag_pipeline.generate_response(question)
198
+ st.write(response)
199
+ print("Question: ", question)
200
+ print("Response: ", response)
chunks_output.txt ADDED
File without changes
converted_docs/1.docx ADDED
Binary file (72 kB). View file
 
converted_docs/10.docx ADDED
Binary file (35 kB). View file
 
converted_docs/11.docx ADDED
Binary file (59.6 kB). View file
 
converted_docs/12.docx ADDED
Binary file (46.6 kB). View file
 
converted_docs/13.docx ADDED
Binary file (52.3 kB). View file
 
converted_docs/14.docx ADDED
Binary file (45.1 kB). View file
 
converted_docs/15.docx ADDED
Binary file (47.7 kB). View file
 
converted_docs/16.docx ADDED
Binary file (63.1 kB). View file
 
converted_docs/17.docx ADDED
Binary file (55.5 kB). View file
 
converted_docs/19.docx ADDED
Binary file (70 kB). View file
 
converted_docs/2.docx ADDED
Binary file (115 kB). View file
 
converted_docs/20.docx ADDED
Binary file (57.4 kB). View file
 
converted_docs/3.docx ADDED
Binary file (44 kB). View file
 
converted_docs/4.docx ADDED
Binary file (84.5 kB). View file
 
converted_docs/5.docx ADDED
Binary file (60.7 kB). View file
 
converted_docs/6.docx ADDED
Binary file (55.1 kB). View file
 
converted_docs/7.docx ADDED
Binary file (59.2 kB). View file
 
converted_docs/8.docx ADDED
Binary file (45.2 kB). View file
 
converted_docs/9.docx ADDED
Binary file (45.1 kB). View file
 
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch
2
+ python-docx
3
+ langchain
4
+ langchain_community==0.0.36
5
+ langchain_chroma
6
+ sentence-transformers