Spaces:
Running
Running
import bridges | |
from huggingface_hub import InferenceClient | |
import gradio_client | |
import io | |
import globales | |
def genera_platillo_gpu(platillo): | |
client = gradio_client.Client(globales.espacio, hf_token=globales.llave) | |
prompt = globales.previo + platillo | |
print("Eso es el prompt final:", prompt) | |
kwargs = { | |
"prompt": prompt, | |
"api_name": "/infer" | |
} | |
try: | |
result = client.predict(**kwargs | |
# prompt=prompt, | |
# negative_prompt="", | |
# seed=42, | |
# randomize_seed=True, | |
# width=1024, | |
# height=1024, | |
# guidance_scale=3.5, | |
# num_inference_steps=28, | |
# api_name="/infer" | |
) | |
return result[0] | |
except Exception as e: | |
print("Excepción es: ", e) | |
def genera_platillo_inference(platillo): | |
client = InferenceClient( | |
provider= globales.proveedor, | |
api_key=globales.llave | |
) | |
prompt = globales.previo + platillo | |
try: | |
image = client.text_to_image( | |
prompt, | |
model=globales.inferencia, | |
#seed=42, #default varía pero el default es que siempre sea la misma. | |
#guidance_scale=7.5, | |
#num_inference_steps=50, | |
#width=1024, #El default es 1024 x 1024 y quizá 1024*768, el max es 1536. | |
#height=1024 #El límite de replicate es 1024. | |
) | |
img_io = io.BytesIO() | |
image.save(img_io, "PNG") | |
img_io.seek(0) | |
return img_io | |
except Exception as e: | |
print("Excepción es: ", e) |