Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# Load the model and tokenizer | |
model_name = r"bigscience/bloomz-1b1" | |
#"bigscience/bloomz-560m" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
def generate_text(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=300, | |
temperature=0.9, | |
do_sample=True, | |
top_k=50, | |
top_p=0.95 | |
) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Gradio interface | |
demo = gr.Interface(fn=generate_text, | |
inputs=gr.Textbox(lines=2, placeholder="Enter a prompt..."), | |
outputs="text", | |
title="π BLOOMZ-560M Multilingual Generator") | |
demo.launch() | |