Spaces:
Running
Running
# Load model directly | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import gradio as gr | |
model = AutoModelForCausalLM.from_pretrained("MohamedTalaat91/gpt2-wikitext2") | |
tokenizer = AutoTokenizer.from_pretrained("MohamedTalaat91/gpt2-tokenizer") | |
def generate(input_text) : | |
inputs = tokenizer(input_text, return_tensors="pt") | |
# Generate text based on the input | |
generated_ids = model.generate( | |
inputs['input_ids'], | |
max_length=100, # Adjust the max length as needed | |
num_return_sequences=1, # Number of texts to generate | |
do_sample=True, # Enable sampling (as opposed to greedy search) | |
top_k=50, # Top-k sampling to introduce diversity | |
temperature=0.7 # Controls randomness in sampling | |
) | |
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) | |
return generated_text | |
import gradio as gr | |
with gr.Blocks() as demo: | |
gr.Markdown("# GPT-2 WikiText2") | |
with gr.Row(): | |
with gr.Column(): | |
input_text = gr.Textbox(label="Input Text") | |
generate_button = gr.Button("Generate") | |
output_text = gr.Textbox(label="Generated Text") | |
generate_button.click(fn=generate, inputs=input_text, outputs=output_text) | |
demo.launch(share=True) | |