Chatbot / app.py
MohamedTalaat91's picture
Update app.py
16f0fc5 verified
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
model = AutoModelForCausalLM.from_pretrained("MohamedTalaat91/gpt2-wikitext2")
tokenizer = AutoTokenizer.from_pretrained("MohamedTalaat91/gpt2-tokenizer")
def generate(input_text) :
inputs = tokenizer(input_text, return_tensors="pt")
# Generate text based on the input
generated_ids = model.generate(
inputs['input_ids'],
max_length=100, # Adjust the max length as needed
num_return_sequences=1, # Number of texts to generate
do_sample=True, # Enable sampling (as opposed to greedy search)
top_k=50, # Top-k sampling to introduce diversity
temperature=0.7 # Controls randomness in sampling
)
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return generated_text
import gradio as gr
with gr.Blocks() as demo:
gr.Markdown("# GPT-2 WikiText2")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text")
generate_button = gr.Button("Generate")
output_text = gr.Textbox(label="Generated Text")
generate_button.click(fn=generate, inputs=input_text, outputs=output_text)
demo.launch(share=True)