MohamedRashad commited on
Commit
a5e543c
·
1 Parent(s): 5eedf0a

Replace FluxPipeline with InferenceClient for image generation and update related code

Browse files
Files changed (1) hide show
  1. app.py +7 -5
app.py CHANGED
@@ -16,12 +16,14 @@ from trellis.representations import Gaussian, MeshExtractResult
16
  from trellis.utils import render_utils, postprocessing_utils
17
  from gradio_client import Client
18
  from diffusers import FluxPipeline
 
19
 
20
  llm_client = Client("Qwen/Qwen2.5-72B-Instruct")
 
21
 
22
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
23
- pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to("cpu")
24
- print(f"Flux pipeline loaded on {pipe.device}")
25
 
26
  def generate_t2i_prompt(item_name):
27
  llm_prompt_template = """You are tasked with creating a concise yet highly detailed description of an item to be used for generating an image in a game development pipeline. The image should show the **entire item** with no parts cropped or hidden. The background should always be plain and monocolor, with no focus on it.
@@ -52,9 +54,9 @@ Focus on the item itself, ensuring it is fully described, and specify a plain, w
52
 
53
  return object_t2i_prompt
54
 
55
- @spaces.GPU
56
  def generate_item_image(object_t2i_prompt):
57
- image = pipe(prompt=object_t2i_prompt, guidance_scale=3.5, num_inference_steps=28, width=1024, height=1024, generator=torch.Generator("cpu").manual_seed(0), output_type="pil").images[0]
 
58
  trial_id, processed_image = preprocess_pil_image(image)
59
  return trial_id, processed_image
60
 
 
16
  from trellis.utils import render_utils, postprocessing_utils
17
  from gradio_client import Client
18
  from diffusers import FluxPipeline
19
+ from huggingface_hub import InferenceClient
20
 
21
  llm_client = Client("Qwen/Qwen2.5-72B-Instruct")
22
+ client = InferenceClient("black-forest-labs/FLUX.1-dev")
23
 
24
+ # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
25
+ # pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to("cpu")
26
+ # print(f"Flux pipeline loaded on {pipe.device}")
27
 
28
  def generate_t2i_prompt(item_name):
29
  llm_prompt_template = """You are tasked with creating a concise yet highly detailed description of an item to be used for generating an image in a game development pipeline. The image should show the **entire item** with no parts cropped or hidden. The background should always be plain and monocolor, with no focus on it.
 
54
 
55
  return object_t2i_prompt
56
 
 
57
  def generate_item_image(object_t2i_prompt):
58
+ # image = pipe(prompt=object_t2i_prompt, guidance_scale=3.5, num_inference_steps=28, width=1024, height=1024, generator=torch.Generator("cpu").manual_seed(0), output_type="pil").images[0]
59
+ image = client.text_to_image(object_t2i_prompt, guidance_scale=3.5, num_inference_steps=28, width=1024, height=1024)
60
  trial_id, processed_image = preprocess_pil_image(image)
61
  return trial_id, processed_image
62