Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
38f03cc
1
Parent(s):
df48381
Refactor image generation in app.py to streamline processing and enhance performance
Browse files
app.py
CHANGED
@@ -1,19 +1,11 @@
|
|
1 |
-
import spaces
|
2 |
-
from diffusers import FluxPipeline, AutoencoderKL
|
3 |
-
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
|
4 |
-
import torch
|
5 |
-
|
6 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
-
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
|
8 |
-
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16).to(device)
|
9 |
-
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
10 |
-
|
11 |
import gradio as gr
|
|
|
12 |
from gradio_litmodel3d import LitModel3D
|
13 |
|
14 |
import os
|
15 |
os.environ['SPCONV_ALGO'] = 'native'
|
16 |
from typing import *
|
|
|
17 |
import numpy as np
|
18 |
import imageio
|
19 |
import uuid
|
@@ -23,9 +15,13 @@ from trellis.pipelines import TrellisImageTo3DPipeline
|
|
23 |
from trellis.representations import Gaussian, MeshExtractResult
|
24 |
from trellis.utils import render_utils, postprocessing_utils
|
25 |
from gradio_client import Client
|
|
|
26 |
|
27 |
llm_client = Client("Qwen/Qwen2.5-72B-Instruct")
|
28 |
|
|
|
|
|
|
|
29 |
def generate_t2i_prompt(item_name):
|
30 |
llm_prompt_template = """You are tasked with creating a concise yet highly detailed description of an item to be used for generating an image in a game development pipeline. The image should show the **entire item** with no parts cropped or hidden. The background should always be plain and monocolor, with no focus on it.
|
31 |
|
@@ -55,32 +51,19 @@ Focus on the item itself, ensuring it is fully described, and specify a plain, w
|
|
55 |
|
56 |
return object_t2i_prompt
|
57 |
|
58 |
-
@spaces.GPU(duration=
|
59 |
def generate_item_image(object_t2i_prompt):
|
60 |
-
|
61 |
-
|
62 |
-
prompt=object_t2i_prompt,
|
63 |
-
guidance_scale=3.5,
|
64 |
-
num_inference_steps=28,
|
65 |
-
width=1024,
|
66 |
-
height=1024,
|
67 |
-
generator=torch.Generator("cpu").manual_seed(0),
|
68 |
-
output_type="pil",
|
69 |
-
good_vae=good_vae,
|
70 |
-
):
|
71 |
-
yield trial_id, image
|
72 |
-
|
73 |
-
trial_id, processed_image = preprocess_image(image)
|
74 |
return trial_id, processed_image
|
75 |
|
76 |
-
|
77 |
MAX_SEED = np.iinfo(np.int32).max
|
78 |
TMP_DIR = "/tmp/Trellis-demo"
|
79 |
|
80 |
os.makedirs(TMP_DIR, exist_ok=True)
|
81 |
|
82 |
|
83 |
-
def
|
84 |
"""
|
85 |
Preprocess the input image.
|
86 |
|
@@ -265,7 +248,7 @@ with gr.Blocks(title="Game Items Generator") as demo:
|
|
265 |
for image in os.listdir("assets/example_image")
|
266 |
],
|
267 |
inputs=[image_prompt],
|
268 |
-
fn=
|
269 |
outputs=[trial_id, image_prompt],
|
270 |
run_on_click=True,
|
271 |
examples_per_page=64,
|
@@ -283,7 +266,7 @@ with gr.Blocks(title="Game Items Generator") as demo:
|
|
283 |
outputs=[trial_id, image_prompt],
|
284 |
)
|
285 |
image_prompt.upload(
|
286 |
-
|
287 |
inputs=[image_prompt],
|
288 |
outputs=[trial_id, image_prompt],
|
289 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
from gradio_litmodel3d import LitModel3D
|
4 |
|
5 |
import os
|
6 |
os.environ['SPCONV_ALGO'] = 'native'
|
7 |
from typing import *
|
8 |
+
import torch
|
9 |
import numpy as np
|
10 |
import imageio
|
11 |
import uuid
|
|
|
15 |
from trellis.representations import Gaussian, MeshExtractResult
|
16 |
from trellis.utils import render_utils, postprocessing_utils
|
17 |
from gradio_client import Client
|
18 |
+
from diffusers import FluxPipeline
|
19 |
|
20 |
llm_client = Client("Qwen/Qwen2.5-72B-Instruct")
|
21 |
|
22 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
23 |
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
|
24 |
+
|
25 |
def generate_t2i_prompt(item_name):
|
26 |
llm_prompt_template = """You are tasked with creating a concise yet highly detailed description of an item to be used for generating an image in a game development pipeline. The image should show the **entire item** with no parts cropped or hidden. The background should always be plain and monocolor, with no focus on it.
|
27 |
|
|
|
51 |
|
52 |
return object_t2i_prompt
|
53 |
|
54 |
+
@spaces.GPU(duration=100)
|
55 |
def generate_item_image(object_t2i_prompt):
|
56 |
+
image = pipe(prompt=object_t2i_prompt, guidance_scale=3.5, num_inference_steps=28, width=1024, height=1024, generator=torch.Generator("cpu").manual_seed(0), output_type="pil").images[0]
|
57 |
+
trial_id, processed_image = preprocess_pil_image(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
return trial_id, processed_image
|
59 |
|
|
|
60 |
MAX_SEED = np.iinfo(np.int32).max
|
61 |
TMP_DIR = "/tmp/Trellis-demo"
|
62 |
|
63 |
os.makedirs(TMP_DIR, exist_ok=True)
|
64 |
|
65 |
|
66 |
+
def preprocess_pil_image(image: Image.Image) -> Tuple[str, Image.Image]:
|
67 |
"""
|
68 |
Preprocess the input image.
|
69 |
|
|
|
248 |
for image in os.listdir("assets/example_image")
|
249 |
],
|
250 |
inputs=[image_prompt],
|
251 |
+
fn=preprocess_pil_image,
|
252 |
outputs=[trial_id, image_prompt],
|
253 |
run_on_click=True,
|
254 |
examples_per_page=64,
|
|
|
266 |
outputs=[trial_id, image_prompt],
|
267 |
)
|
268 |
image_prompt.upload(
|
269 |
+
preprocess_pil_image,
|
270 |
inputs=[image_prompt],
|
271 |
outputs=[trial_id, image_prompt],
|
272 |
)
|