Spaces:
Sleeping
Sleeping
File size: 62,253 Bytes
a4de15e 4cb9a26 d419338 a4de15e 4cb9a26 a4de15e d419338 4cb9a26 d419338 a4de15e 4cb9a26 a4de15e 60f0037 89ac221 4cb9a26 d419338 4cb9a26 89ac221 d419338 4cb9a26 d419338 4cb9a26 d419338 4cb9a26 d419338 60f0037 d419338 4cb9a26 d419338 89ac221 4cb9a26 d419338 89ac221 4cb9a26 89ac221 60f0037 89ac221 4cb9a26 8586c6d 4cb9a26 89ac221 8586c6d 4cb9a26 89ac221 8586c6d 4cb9a26 89ac221 4cb9a26 8586c6d 60f0037 8586c6d 4cb9a26 8586c6d 60f0037 4cb9a26 60f0037 4cb9a26 60f0037 8586c6d 60f0037 4cb9a26 89ac221 60f0037 89ac221 4cb9a26 89ac221 8586c6d 60f0037 4cb9a26 89ac221 4cb9a26 d419338 4cb9a26 d419338 4cb9a26 d419338 4cb9a26 d419338 4cb9a26 d419338 4cb9a26 d419338 4cb9a26 d419338 4cb9a26 d419338 4cb9a26 60f0037 a4de15e 4cb9a26 89ac221 60f0037 4cb9a26 a4de15e 4cb9a26 8586c6d 4cb9a26 60f0037 4cb9a26 89ac221 4cb9a26 89ac221 4cb9a26 d419338 4cb9a26 60f0037 4cb9a26 60f0037 d419338 60f0037 d419338 60f0037 89ac221 4cb9a26 89ac221 4cb9a26 60f0037 4cb9a26 d419338 89ac221 60f0037 d419338 a4de15e 4cb9a26 89ac221 d419338 60f0037 89ac221 4cb9a26 0fe029b 4cb9a26 0fe029b 4cb9a26 d419338 4cb9a26 0fe029b 4cb9a26 60f0037 4cb9a26 d419338 4cb9a26 d419338 4cb9a26 60f0037 89ac221 4cb9a26 8586c6d 4cb9a26 d419338 89ac221 4cb9a26 8586c6d 89ac221 4cb9a26 89ac221 d419338 4cb9a26 d419338 8586c6d d419338 4cb9a26 89ac221 4cb9a26 60f0037 d419338 89ac221 4cb9a26 a4de15e d419338 60f0037 4cb9a26 60f0037 4cb9a26 60f0037 4cb9a26 60f0037 4cb9a26 d419338 4cb9a26 d419338 89ac221 d419338 4cb9a26 60f0037 4cb9a26 d419338 60f0037 8586c6d 89ac221 60f0037 8586c6d 89ac221 4cb9a26 89ac221 60f0037 4cb9a26 60f0037 4cb9a26 60f0037 89ac221 4cb9a26 89ac221 4cb9a26 d419338 4cb9a26 60f0037 89ac221 4cb9a26 89ac221 d419338 89ac221 d419338 4cb9a26 d419338 60f0037 4cb9a26 60f0037 89ac221 4cb9a26 60f0037 8586c6d 89ac221 4cb9a26 60f0037 4cb9a26 8586c6d 4cb9a26 8586c6d 4cb9a26 60f0037 4cb9a26 60f0037 89ac221 60f0037 4cb9a26 8586c6d 89ac221 4cb9a26 d419338 4cb9a26 60f0037 4cb9a26 d419338 4cb9a26 d419338 60f0037 4cb9a26 60f0037 4cb9a26 d419338 4cb9a26 d419338 4cb9a26 60f0037 d419338 4cb9a26 60f0037 4cb9a26 d419338 60f0037 d419338 89ac221 4cb9a26 60f0037 4cb9a26 60f0037 4cb9a26 60f0037 4cb9a26 60f0037 d419338 89ac221 60f0037 4cb9a26 60f0037 8586c6d 4cb9a26 60f0037 8586c6d 60f0037 4cb9a26 d419338 4cb9a26 60f0037 89ac221 4cb9a26 89ac221 60f0037 89ac221 60f0037 89ac221 60f0037 89ac221 4cb9a26 89ac221 4cb9a26 60f0037 4cb9a26 60f0037 4cb9a26 8586c6d 4cb9a26 60f0037 4cb9a26 60f0037 4cb9a26 89ac221 4cb9a26 60f0037 89ac221 4cb9a26 89ac221 4cb9a26 d419338 4cb9a26 60f0037 d419338 4cb9a26 d419338 4cb9a26 60f0037 4cb9a26 89ac221 4cb9a26 60f0037 8586c6d 4cb9a26 60f0037 4cb9a26 60f0037 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 |
import gradio as gr
from openai import OpenAI
import openai
from pydantic import BaseModel, Field
import os
import requests
from PIL import Image
import tempfile
import io
import markdown
import base64
import datetime
import json
import re
from dotenv import load_dotenv
load_dotenv()
# Clé OpenRouter
openrouter_api_key = os.getenv("OPENROUTER_API_KEY")
OPENROUTER_TEXT_MODEL = os.getenv("OPENROUTER_TEXT_MODEL", "mistralai/mistral-small-3.1-24b-instruct:free")
# Modèles OpenAI
OPENAI_TEXT_MODEL = "gpt-4o-mini"
OPENAI_IMAGE_MODEL = "dall-e-3"
# Modèle Image via OpenRouter
OPENROUTER_IMAGE_MODEL = "openai/dall-e-3"
# --- Modèles Pydantic ---
class BiasInfo(BaseModel):
bias_type: str = Field(..., description="Type de biais identifié")
explanation: str = Field(..., description="Explication contextuelle")
advice: str = Field(..., description="Conseil d'atténuation")
class BiasAnalysisResponse(BaseModel):
detected_biases: list[BiasInfo] = Field(default_factory=list)
overall_comment: str = Field(default="")
# --- Fonctions Utilitaires ---
posture_mapping = {"": "","Debout": "standing up","Assis": "sitting","Allongé": "lying down","Accroupi": "crouching","En mouvement": "moving","Reposé": "resting"}
facial_expression_mapping = {"": "","Souriant": "smiling","Sérieux": "serious","Triste": "sad","En colère": "angry","Surpris": "surprised","Pensif": "thoughtful"}
skin_color_mapping = {"": "","Clair": "light","Moyen": "medium","Foncé": "dark","Très foncé": "very dark"}
eye_color_mapping = {"": "","Bleu": "blue","Vert": "green","Marron": "brown","Gris": "gray"}
hair_style_mapping = {"": "","Court": "short","Long": "long","Bouclé": "curly","Rasé": "shaved","Chauve": "bald","Tresses": "braided","Queue de cheval": "ponytail","Coiffure afro": "afro","Dégradé": "fade"}
hair_color_mapping = {"": "","Blond": "blonde","Brun": "brown","Noir": "black","Roux": "red","Gris": "gray","Blanc": "white"}
clothing_style_mapping = {"": "","Décontracté": "casual","Professionnel": "professional","Sportif": "sporty"}
accessories_mapping = {"": "","Lunettes": "glasses","Montre": "watch","Chapeau": "hat"}
gender_mapping = {"Homme": "man", "Femme": "woman", "Non-binaire": "non-binary person"}
MAX_LOG_LINES = 150
def update_log(event_description, session_log_state):
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
new_log_entry = f"[{timestamp}] {event_description}"
current_log = session_log_state if session_log_state else ""
log_lines = current_log.splitlines()
if len(log_lines) >= MAX_LOG_LINES: current_log = "\n".join(log_lines[-(MAX_LOG_LINES-1):])
updated_log = current_log + "\n" + new_log_entry if current_log else new_log_entry
return updated_log.strip()
def clean_json_response(raw_response):
match = re.search(r"```json\s*({.*?})\s*```", raw_response, re.DOTALL | re.IGNORECASE)
if match: return match.group(1)
start = raw_response.find('{'); end = raw_response.rfind('}')
if start != -1 and end != -1 and end > start:
potential_json = raw_response[start:end+1]
try: json.loads(potential_json); return potential_json
except json.JSONDecodeError:
cleaned = re.sub(r",\s*([}\]])", r"\1", potential_json)
try: json.loads(cleaned); return cleaned
except json.JSONDecodeError: pass
return raw_response.strip()
# --- Holder Client API ---
active_api_client_holder = {"client": None, "openai_key": None}
# --- Fonctions Principales ---
def get_active_client(app_config):
"""Récupère le client stocké globalement."""
api_source = app_config.get("api_source")
if not api_source: return None, "Source API non configurée."
client = active_api_client_holder.get("client")
if not client:
print("WARN: Client actif non trouvé, tentative de ré-initialisation.")
if api_source == "openai" and active_api_client_holder.get("openai_key"):
try:
client = OpenAI(api_key=active_api_client_holder["openai_key"])
active_api_client_holder["client"] = client; print("Client OpenAI ré-initialisé.")
except Exception as e: return None, f"Échec ré-init OpenAI: {e}"
elif api_source == "openrouter" and openrouter_api_key:
try:
client = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=openrouter_api_key)
active_api_client_holder["client"] = client; print("Client OpenRouter ré-initialisé.")
except Exception as e: return None, f"Échec ré-init OpenRouter: {e}"
else: return None, f"Impossible ré-init client pour '{api_source}'. Clé/config manquante."
if not client: return None, f"Client API pour '{api_source}' non disponible."
return client, None
def analyze_biases(app_config, objective_text, session_log_state):
"""Analyse les biais dans l'objectif marketing en forçant un format JSON."""
log = session_log_state
log = update_log(f"Analyse biais objectif (début): '{objective_text[:50]}...'", log)
if not objective_text:
return BiasAnalysisResponse(overall_comment="Veuillez fournir un objectif marketing.").model_dump(), update_log("Analyse biais: Objectif vide.", log)
active_client, error_msg = get_active_client(app_config)
if error_msg:
log = update_log(f"ERREUR Analyse biais: {error_msg}", log)
return BiasAnalysisResponse(overall_comment=f"Erreur: {error_msg}").model_dump(), log
model_name = app_config.get("text_model")
api_source = app_config.get("api_source")
# --- Génération du Schéma JSON ---
bias_schema = None
try:
bias_schema = BiasAnalysisResponse.model_json_schema()
except Exception as schema_e:
log = update_log(f"ERREUR Génération schéma Pydantic: {schema_e}", log)
return BiasAnalysisResponse(overall_comment=f"Erreur interne génération schéma: {schema_e}").model_dump(), log
# --- System Prompt ---
system_prompt = f"""
Tu es un expert en marketing éthique et en psychologie cognitive, spécialisé dans la création de personas.
Analyse l'objectif marketing suivant : "{objective_text}"
Identifie les BIAIS COGNITIFS POTENTIELS ou RISQUES DE STÉRÉOTYPES pertinents pour la création de personas. Concentre-toi sur :
1. **Stéréotypes / Généralisations Hâtives :** Suppose-t-on des traits basés sur le genre, l'âge, l'ethnie, le statut socio-économique sans justification ? (Ex: 'tous les jeunes urbains sont écolos')
2. **Biais de Confirmation / Affinité :** L'objectif semble-t-il chercher à valider une idée préconçue ou refléter trop les opinions du concepteur ? (Ex: 'prouver que notre produit est parfait pour CE type de personne')
3. **Simplification Excessive / Manque de Nuance :** Le groupe cible est-il décrit de manière trop monolithique, ignorant la diversité interne ? (Ex: 'les seniors actifs' sans différencier leurs motivations ou capacités)
4. **Autres biais pertinents** (Ex: Oubli de fréquence de base, Biais de normalité si applicable).
Pour chaque biais potentiel identifié :
- Nomme le type de biais (ex: Stéréotype d'âge).
- Explique brièvement POURQUOI c'est un risque DANS CE CONTEXTE de création de persona.
- Propose un CONSEIL PRÉCIS pour nuancer l'objectif ou être vigilant lors de la création.
Structure TOUTE ta réponse EXCLUSIVEMENT en utilisant le format JSON suivant (basé sur la classe Pydantic BiasAnalysisResponse):
{{
"detected_biases": [
{{
"bias_type": "Type de biais identifié",
"explanation": "Explication contextuelle du risque.",
"advice": "Conseil spécifique d'atténuation."
}}
// ... autres biais détectés ...
],
"overall_comment": "Bref commentaire général. Indique si aucun biais majeur n'est détecté."
}}
Réponds en français. S'il n'y a pas de biais clair, retourne une liste 'detected_biases' vide et indique-le dans 'overall_comment'.
Assure-toi que la sortie est un objet JSON unique et valide correspondant exactement à cette structure. Ne retourne AUCUN texte avant ou après le JSON.
"""
response_content_str = ""
try:
# --- Choix dynamique du response_format ---
response_format_config = None
if api_source == "openai":
response_format_config = {"type": "json_object"}
log = update_log(f"INFO: Utilisation response_format=json_object pour OpenAI ({model_name})", log)
elif api_source == "openrouter" and bias_schema:
response_format_config = {
"type": "json_schema",
"json_schema": {
"name": "bias_analysis",
"strict": True,
"description": "Analyse des biais potentiels dans un objectif marketing.",
"schema": bias_schema
}
}
log = update_log(f"INFO: Utilisation response_format=json_schema pour OpenRouter ({model_name})", log)
else:
log = update_log(f"WARN: Aucun response_format spécifique appliqué pour {api_source}", log)
# --- Appel API ---
completion = active_client.chat.completions.create(
model=model_name,
messages=[{"role": "user", "content": system_prompt}],
temperature=0,
max_tokens=2400,
response_format=response_format_config,
)
raw_response_content = completion.choices[0].message.content
# --- Parsing de la réponse ---
try:
parsed_response = BiasAnalysisResponse.model_validate_json(raw_response_content)
log = update_log(f"Analyse biais objectif (fin): Biais trouvés - {len(parsed_response.detected_biases)}", log)
return parsed_response.model_dump(), log
except (json.JSONDecodeError, TypeError, ValueError) as direct_parse_error:
format_type = response_format_config.get('type', 'inconnu') if response_format_config else 'inconnu'
log = update_log(f"ERREUR Parsing direct réponse JSON (mode {format_type}): {direct_parse_error}. Contenu brut: {raw_response_content!r}", log)
cleaned_response_str = clean_json_response(str(raw_response_content))
try:
parsed_response = BiasAnalysisResponse.model_validate_json(cleaned_response_str)
log = update_log(f"Analyse biais objectif (fin après clean): Biais trouvés - {len(parsed_response.detected_biases)}", log)
return parsed_response.model_dump(), log
except Exception as final_parse_error:
error_msg_detail = f"Erreur parsing JSON final: {final_parse_error}. Nettoyé: '{cleaned_response_str[:200]}...'"
print(error_msg_detail)
log = update_log(f"ERREUR Analyse biais parsing final (mode {format_type}): {final_parse_error}", log)
return BiasAnalysisResponse(overall_comment=f"Erreur technique parsing réponse JSON (mode {format_type}): {final_parse_error}").model_dump(), log
# --- Gestion des erreurs API ---
except openai.BadRequestError as e:
error_type = type(e).__name__; error_details = repr(e)
user_error_msg = f"Erreur Requête API ({error_type}). Vérifiez param/modèle."
log_msg_prefix = f"ERREUR API Call ({api_source}, {model_name})"
if "response_format" in str(e):
user_error_msg += f" Problème format réponse ({response_format_config.get('type', '?') if response_format_config else '?'})."
log_msg = f"{log_msg_prefix}: Problème format réponse. Détails: {error_details}"
elif "model" in str(e):
user_error_msg += " Modèle invalide ou non trouvé."
log_msg = f"{log_msg_prefix}: Modèle invalide. Détails: {error_details}"
else:
log_msg = f"{log_msg_prefix}: {str(e)}. Détails: {error_details}"
print(log_msg); log = update_log(log_msg, log)
return BiasAnalysisResponse(overall_comment=user_error_msg).model_dump(), log
except openai.AuthenticationError as e:
error_msg = f"Erreur auth API ({api_source}). Vérifiez clé."; print(error_msg)
log = update_log(f"ERR API Auth ({api_source}): {error_msg}", log)
return BiasAnalysisResponse(overall_comment=error_msg).model_dump(), log
except openai.RateLimitError as e:
error_msg = f"Erreur API ({api_source}): Limite taux atteinte."; print(error_msg)
log = update_log(f"ERR API RateLimit ({api_source}): {error_msg}", log)
return BiasAnalysisResponse(overall_comment=error_msg).model_dump(), log
except Exception as e:
error_type = type(e).__name__; error_details = repr(e)
user_error_msg = f"Erreur technique analyse ({error_type}). Vérifiez connexion/modèle."
log_msg = f"ERR Analyse biais API Call ({error_type} sur {api_source}, {model_name}): {str(e)}. Détails: {error_details}"
print(log_msg); log = update_log(log_msg, log)
return BiasAnalysisResponse(overall_comment=user_error_msg).model_dump(), log
"""Analyse les biais dans l'objectif marketing en forçant un schéma JSON."""
log = session_log_state
log = update_log(f"Analyse biais objectif (début): '{objective_text[:50]}...'", log)
if not objective_text:
return BiasAnalysisResponse(overall_comment="Veuillez fournir un objectif marketing.").model_dump(), update_log("Analyse biais: Objectif vide.", log)
active_client, error_msg = get_active_client(app_config)
if error_msg:
log = update_log(f"ERREUR Analyse biais: {error_msg}", log)
return BiasAnalysisResponse(overall_comment=f"Erreur: {error_msg}").model_dump(), log
model_name = app_config["text_model"]
# --- Génération et MODIFICATION du Schéma JSON ---
try:
bias_schema = BiasAnalysisResponse.model_json_schema()
except Exception as schema_e:
log = update_log(f"ERREUR Génération schéma Pydantic: {schema_e}", log)
return BiasAnalysisResponse(overall_comment=f"Erreur interne génération schéma: {schema_e}").model_dump(), log
# --- System Prompt ---
system_prompt = f"""
Tu es un expert en marketing éthique et en psychologie cognitive, spécialisé dans la création de personas.
Analyse l'objectif marketing suivant : "{objective_text}"
Identifie les BIAIS COGNITIFS POTENTIELS ou RISQUES DE STÉRÉOTYPES pertinents pour la création de personas. Concentre-toi sur :
1. **Stéréotypes / Généralisations Hâtives :** Suppose-t-on des traits basés sur le genre, l'âge, l'ethnie, le statut socio-économique sans justification ? (Ex: 'tous les jeunes urbains sont écolos')
2. **Biais de Confirmation / Affinité :** L'objectif semble-t-il chercher à valider une idée préconçue ou refléter trop les opinions du concepteur ? (Ex: 'prouver que notre produit est parfait pour CE type de personne')
3. **Simplification Excessive / Manque de Nuance :** Le groupe cible est-il décrit de manière trop monolithique, ignorant la diversité interne ? (Ex: 'les seniors actifs' sans différencier leurs motivations ou capacités)
4. **Autres biais pertinents** (Ex: Oubli de fréquence de base, Biais de normalité si applicable).
Pour chaque biais potentiel identifié :
- Nomme le type de biais (ex: Stéréotype d'âge).
- Explique brièvement POURQUOI c'est un risque DANS CE CONTEXTE de création de persona.
- Propose un CONSEIL PRÉCIS pour nuancer l'objectif ou être vigilant lors de la création.
Structure ta réponse en utilisant le format JSON suivant (avec la classe Pydantic BiasAnalysisResponse):
{{
"detected_biases": [
{{
"bias_type": "Type de biais identifié",
"explanation": "Explication contextuelle du risque.",
"advice": "Conseil spécifique d'atténuation."
}}
],
"overall_comment": "Bref commentaire général. Indique si aucun biais majeur n'est détecté."
}}
Réponds en français. S'il n'y a pas de biais clair, retourne une liste 'detected_biases' vide et indique-le dans 'overall_comment'.
Ne retourne PAS de texte brut ou d'explications supplémentaires. Utilise uniquement le format JSON ci-dessus.
"""
response_content_str = ""
try:
# --- Appel API avec Structured Output ---
completion = active_client.chat.completions.create(
model=model_name,
messages=[{"role": "user", "content": system_prompt}],
temperature=0.2,
max_tokens=2400,
response_format={
"type": "json_schema",
"json_schema": {
"name": "bias_analysis",
"strict": True,
"description": "Analyse des biais potentiels dans un objectif marketing.",
"schema": bias_schema
}
},
)
raw_response_content = completion.choices[0].message.content
try:
parsed_response = BiasAnalysisResponse.model_validate_json(raw_response_content)
log = update_log(f"Analyse biais objectif (fin): Biais trouvés - {len(parsed_response.detected_biases)}", log)
return parsed_response.model_dump(), log
except (json.JSONDecodeError, TypeError, ValueError) as direct_parse_error:
log = update_log(f"ERREUR Parsing direct réponse JSON Schema: {direct_parse_error}. Contenu brut: {raw_response_content!r}", log)
cleaned_response_str = clean_json_response(str(raw_response_content))
try:
parsed_response = BiasAnalysisResponse.model_validate_json(cleaned_response_str)
log = update_log(f"Analyse biais objectif (fin après clean): Biais trouvés - {len(parsed_response.detected_biases)}", log)
return parsed_response.model_dump(), log
except Exception as final_parse_error:
error_msg = f"Erreur parsing JSON final: {final_parse_error}. Nettoyé: '{cleaned_response_str[:200]}...'"
print(error_msg); log = update_log(f"ERREUR Analyse biais parsing final: {final_parse_error}", log)
return BiasAnalysisResponse(overall_comment=f"Erreur technique parsing réponse JSON Schema: {final_parse_error}").model_dump(), log
except openai.BadRequestError as e:
error_type = type(e).__name__; error_details = repr(e)
user_error_msg = f"Erreur Requête API ({error_type}). Vérifiez les paramètres/schéma."
if "Invalid schema for response_format" in str(e):
user_error_msg += " Problème avec le format de réponse demandé."
log_msg = f"ERREUR API Call: Schéma JSON invalide selon l'API. Détails: {error_details}"
else:
log_msg = f"ERREUR API Call ({error_type}): {str(e)}. Détails: {error_details}"
print(log_msg); log = update_log(log_msg, log)
return BiasAnalysisResponse(overall_comment=user_error_msg).model_dump(), log
except openai.AuthenticationError as e: error_msg = f"Erreur auth API ({app_config.get('api_source', '?')}). Vérifiez clé."; print(error_msg); log = update_log(f"ERR API Auth: {error_msg}", log); return BiasAnalysisResponse(overall_comment=error_msg).model_dump(), log
except openai.RateLimitError as e: error_msg = f"Erreur API ({app_config.get('api_source', '?')}): Limite taux."; print(error_msg); log = update_log(f"ERR API RateLimit: {error_msg}", log); return BiasAnalysisResponse(overall_comment=error_msg).model_dump(), log
except Exception as e:
error_type = type(e).__name__; error_details = repr(e)
user_error_msg = f"Erreur technique analyse ({error_type}). Vérifiez connexion/modèle."
log_msg = f"ERR Analyse biais API Call ({error_type}): {str(e)}. Détails: {error_details}"
print(log_msg); log = update_log(log_msg, log)
return BiasAnalysisResponse(overall_comment=user_error_msg).model_dump(), log
# --- display_bias_analysis ---
def display_bias_analysis(analysis_result):
if not analysis_result: return [("Aucune analyse effectuée.", None)]
biases = analysis_result.get("detected_biases", [])
overall_comment = analysis_result.get("overall_comment", "")
highlighted_data = []
if "Erreur" in overall_comment: highlighted_data.append((overall_comment, "ERROR"))
elif not biases: highlighted_data.append((overall_comment or "Aucun biais majeur détecté.", "INFO"))
else:
if overall_comment: highlighted_data.append((overall_comment + "\n\n", "COMMENT"))
for bias_info in biases:
highlighted_data.append((f"⚠️ {bias_info.get('bias_type', '?')}: ", "BIAS_TYPE"))
highlighted_data.append((f"{bias_info.get('explanation', '-')}\n", "EXPLANATION"))
highlighted_data.append((f"💡 Conseil: {bias_info.get('advice', '-')}\n", "ADVICE"))
return highlighted_data
# --- generate_persona_image ---
def generate_persona_image(app_config, *args):
"""Génère l'image du persona via OpenAI ou OpenRouter."""
inputs = args[:-1]
session_log_state = args[-1]
log = session_log_state
(first_name, last_name, age, gender, persona_description_en,
skin_color, eye_color, hair_style, hair_color, facial_expression,
posture, clothing_style, accessories) = inputs
api_source = app_config.get("api_source")
image_gen_enabled = app_config.get("image_generation_enabled", False)
if not image_gen_enabled:
log = update_log("Génération image: Désactivée (API non configurée ou non supportée).", log)
return None, log, "Génération d'image désactivée ou non supportée par la configuration API actuelle."
active_client, client_error_msg = get_active_client(app_config)
if client_error_msg:
log = update_log(f"ERREUR Génération image (Client): {client_error_msg}", log)
return None, log, f"Erreur client API pour génération image: {client_error_msg}"
if not first_name or not last_name or not age or not gender:
return None, log, "Veuillez remplir prénom, nom, âge et genre pour générer l'image."
# --- Construction du Prompt ---
gender_en = gender_mapping.get(gender, "person")
lens_aperture = "Kodak Portra 400"
lighting = "soft natural light"
photo_style_details = f"portrait {lighting}, shot on {lens_aperture}"
base_description = (
f"{photo_style_details} of {first_name} {last_name}, "
f"a {age}-year-old {gender_en}. "
)
# Ajout des détails optionnels (moins d'emphase sur "skin texture")
details = ""
if skin_color_mapping.get(skin_color): details += f"Skin tone: {skin_color_mapping[skin_color]}. "
if eye_color_mapping.get(eye_color): details += f"Eye color: {eye_color_mapping[eye_color]}. "
if hair_style_mapping.get(hair_style): details += f"Hairstyle: {hair_style_mapping[hair_style]}. "
if hair_color_mapping.get(hair_color): details += f"Hair color: {hair_color_mapping[hair_color]}. "
if facial_expression_mapping.get(facial_expression): details += f"Facial expression: {facial_expression_mapping[facial_expression]}. "
if accessories_mapping.get(accessories): details += f"Wearing: {accessories_mapping[accessories]}. "
if clothing_style_mapping.get(clothing_style): details += f"Wearing {clothing_style_mapping[clothing_style]} clothing. "
# Le contexte peut être utile pour l'environnemental
if persona_description_en: details += f"Context: {persona_description_en}. "
# Négatifs (garder ce qui est pertinent)
final_prompt = f"{base_description}{details}"
log = update_log(f"Génération image (début via {api_source}): Prompt='{final_prompt[:100]}...'", log)
pil_image = None
try:
if api_source == "openai":
response = active_client.images.generate(
model=OPENAI_IMAGE_MODEL, prompt=final_prompt, size="1024x1024", n=1,
response_format="url", quality="standard"
)
image_url = response.data[0].url
img_response = requests.get(image_url)
img_response.raise_for_status()
pil_image = Image.open(io.BytesIO(img_response.content))
elif api_source == "openrouter":
# --- Appel via OpenRouter Chat Completions ---
response = active_client.chat.completions.create(
model=OPENROUTER_IMAGE_MODEL,
messages=[{"role": "user", "content": final_prompt}],
)
headers = {
"Authorization": f"Bearer {openrouter_api_key}",
"Content-Type": "application/json",
}
payload = {
"model": OPENROUTER_IMAGE_MODEL,
"messages": [{"role": "user", "content": final_prompt}],
"max_tokens": 150,
"n": 1,
}
api_url = "https://openrouter.ai/api/v1/chat/completions"
http_response = requests.post(api_url, headers=headers, json=payload)
http_response.raise_for_status()
response_data = http_response.json()
image_base64_data = None
if response_data.get("choices"):
message = response_data["choices"][0].get("message", {})
content = message.get("content")
if isinstance(content, list):
for part in content:
if part.get("type") == "image_url":
image_url_obj = part.get("image_url", {})
image_base64_data = image_url_obj.get("url")
break
if not image_base64_data:
log = update_log(f"ERREUR Image OpenRouter: Image non trouvée dans la réponse. Réponse: {str(response_data)[:500]}", log)
raise ValueError("Réponse OpenRouter ne contient pas d'URL d'image base64.")
if not image_base64_data.startswith("data:image"):
raise ValueError(f"URL d'image invalide reçue: {image_base64_data[:100]}...")
image_base64_string = image_base64_data.split(',', 1)[1]
image_bytes = base64.b64decode(image_base64_string)
pil_image = Image.open(io.BytesIO(image_bytes))
else:
raise ValueError(f"Source API non supportée pour la génération d'image: {api_source}")
log = update_log(f"Génération image (fin via {api_source}): Succès.", log)
return pil_image, log, None
except (openai.AuthenticationError, openai.RateLimitError, openai.BadRequestError, requests.exceptions.RequestException, ValueError, KeyError) as e:
error_type = type(e).__name__
error_msg_detail = str(e)
if hasattr(e, 'response') and e.response is not None:
try: error_msg_detail += f" | Détail API: {e.response.text[:200]}"
except: pass
user_error_msg = f"Erreur génération image via {api_source} ({error_type})."
full_log_msg = f"ERREUR Génération image via {api_source} ({error_type}): {error_msg_detail}"
print(full_log_msg)
log = update_log(full_log_msg, log)
return None, log, user_error_msg
except Exception as e:
error_type = type(e).__name__
error_msg = f"Erreur inattendue génération image via {api_source} ({error_type}): {str(e)}"
print(error_msg); log = update_log(error_msg, log)
return None, log, f"Erreur inattendue ({error_type}) lors de la génération d'image."
# --- refine_persona_details ---
def refine_persona_details(app_config, first_name, last_name, age, field_name, field_value, bias_analysis_dict, marketing_objectives, session_log_state):
log = session_log_state
log = update_log(f"Raffinement (début): Champ='{field_name}', Valeur='{field_value[:50]}...'", log)
active_client, error_msg = get_active_client(app_config)
if error_msg: log = update_log(f"ERREUR Raffinement: {error_msg}", log); return log, f"ERREUR: {error_msg}", field_name
model_name = app_config["text_model"]
biases_text = "Aucune analyse de biais précédente."
if bias_analysis_dict:
try:
detected = bias_analysis_dict.get("detected_biases", [])
biases_text = "\n".join([f"- {b.get('bias_type','?')}: {b.get('explanation','-')}" for b in detected]) if detected else bias_analysis_dict.get("overall_comment", "Aucun biais majeur détecté.")
except Exception as e: biases_text = f"Err lecture biais: {e}"; log = update_log(f"ERR Lecture Biais Dict: {e}", log)
system_prompt = f"""
Tu es un assistant IA expert en marketing éthique, aidant à affiner le persona marketing pour '{first_name} {last_name}' ({age} ans).
L'objectif marketing initial était : "{marketing_objectives}"
L'analyse initiale de cet objectif a soulevé les points suivants :
{biases_text}
Tâche: Concentre-toi UNIQUEMENT sur le champ '{field_name}' dont la valeur actuelle est '{field_value}'.
Propose 1 à 2 suggestions CONCISES et ACTIONNABLES pour améliorer, nuancer ou enrichir cette valeur.
Tes suggestions doivent viser à :
- Rendre le persona plus réaliste et moins cliché.
- ATTÉNUER spécifiquement les biais potentiels listés ci-dessus s'ils sont pertinents pour ce champ.
- Rester cohérent avec l'objectif marketing général.
- Éviter les généralisations excessives.
Si la valeur actuelle semble bonne ou si tu manques de contexte pour faire une suggestion pertinente, indique-le simplement (ex: "La valeur actuelle semble appropriée." ou "Difficile de suggérer sans plus de contexte.").
Réponds en français. Ne fournis QUE les suggestions ou le commentaire d'approbation/manque de contexte. Ne répète pas la question.
Ne fournis pas d'explications supplémentaires ou de texte brut. Utilise un format clair et concis."""
suggestions = ""
try:
response = active_client.chat.completions.create(
model=model_name, messages=[{"role": "user", "content": system_prompt}],
temperature=0.6, max_tokens=800,
)
suggestions = response.choices[0].message.content.strip()
log = update_log(f"Raffinement (fin): Champ='{field_name}'. Suggestions: '{suggestions[:50]}...'", log)
return log, suggestions, field_name
except openai.AuthenticationError as e: error_msg = f"Erreur auth API ({app_config.get('api_source', '?')}) raffinement."; print(error_msg); log = update_log(f"ERR API Auth (Refine): {error_msg}", log); return log, f"ERREUR: {error_msg}", field_name
except openai.RateLimitError as e: error_msg = f"Erreur API ({app_config.get('api_source', '?')}) (Refine): Limite taux."; print(error_msg); log = update_log(f"ERR API RateLimit (Refine): {error_msg}", log); return log, f"ERREUR: {error_msg}", field_name
except Exception as e: error_msg = f"Erreur raffinement '{field_name}': {str(e)}"; print(error_msg); log = update_log(f"ERR Raffinement '{field_name}': {str(e)}", log); return log, f"ERREUR: {error_msg}", field_name
# --- generate_summary ---
def generate_summary(persona_image_pil, *args):
session_log_state = args[-1]; inputs = args[:-1]; log = session_log_state
(first_name, last_name, age, gender, persona_description_en, skin_color, eye_color, hair_style, hair_color, facial_expression, posture, clothing_style, accessories, marital_status, education_level, profession, income, personality_traits, values_beliefs, motivations, hobbies_interests, main_responsibilities, daily_activities, technology_relationship, product_related_activities, pain_points, product_goals, usage_scenarios, brand_relationship, market_segment, commercial_objectives, visual_codes, special_considerations, daily_life, references) = inputs
log = update_log(f"Génération résumé: Pour '{first_name} {last_name}'.", log)
summary = ""; image_html = "<div style='flex: 0 0 320px; margin-left: 20px; text-align: center; align-self: flex-start;'>\n"
if not first_name or not last_name or not age:
summary += "<h2>Infos base manquantes</h2><p><i>Prénom, nom, âge requis (Étape 2).</i></p>"; image_html += "<p>Image non générée.</p>"
else:
if persona_image_pil and isinstance(persona_image_pil, Image.Image):
try:
buffered = io.BytesIO(); img_to_save = persona_image_pil.copy()
if img_to_save.mode == 'RGBA' or 'transparency' in img_to_save.info: img_to_save = img_to_save.convert('RGB')
img_to_save.save(buffered, format="JPEG", quality=85); img_bytes = buffered.getvalue()
img_base64 = base64.b64encode(img_bytes).decode(); img_data_url = f"data:image/jpeg;base64,{img_base64}"
image_html += f"<img src='{img_data_url}' alt='Persona {first_name}' style='max-width: 100%; height: auto; border: 1px solid #eee; border-radius: 5px; margin-top: 10px;'/>\n"
except Exception as e: img_err_msg = f"Erreur encodage image: {e}"; image_html += f"<p><i>{img_err_msg}</i></p>"; log = update_log(f"ERR Encodage Image Résumé: {e}", log)
else: image_html += "<p><i>Aucune image disponible.</i></p>"
summary += f"<div style='text-align: center;'><h1>{first_name} {last_name}, {age} ans ({gender})</h1></div>"
def add_section(title, fields):
content = ""
for label, value in fields.items():
should_add = (label == "Revenus annuels (€)" and value is not None) or (label != "Revenus annuels (€)" and value)
if should_add:
if label == "Revenus annuels (€)" and isinstance(value, (int, float)):
try: value_str = f"{int(value):,} €".replace(",", " ")
except ValueError: value_str = str(value) + " €"
else: value_str = str(value)
value_str_html = markdown.markdown(value_str).replace('<p>', '').replace('</p>', '').strip().replace("\n", "<br>")
content += f"<b>{label}:</b> {value_str_html}<br>\n"
return f"<h3 style='margin-top: 15px; margin-bottom: 5px; border-bottom: 1px solid #eee; padding-bottom: 2px;'>{title}</h3>\n{content}\n" if content else ""
summary += add_section("Infos socio-démographiques", {"État civil": marital_status, "Niveau d'éducation": education_level, "Profession": profession, "Revenus annuels (€)": income})
summary += add_section("Psychographie", {"Traits de personnalité": personality_traits, "Valeurs et croyances": values_beliefs, "Motivations intrinsèques": motivations, "Hobbies et intérêts": hobbies_interests})
summary += add_section("Relation au produit/service", {"Relation technologie": technology_relationship, "Tâches liées": product_related_activities, "Points de douleur": pain_points, "Objectifs produit": product_goals, "Scénarios d'utilisation": usage_scenarios})
summary += add_section("Contexte pro/quotidien", {"Responsabilités principales": main_responsibilities, "Activités journalières": daily_activities, "Journée type/Citation": daily_life})
summary += add_section("Marketing & considérations", {"Relation marque": brand_relationship, "Segment marché": market_segment, "Objectifs commerciaux": commercial_objectives, "Codes visuels": visual_codes, "Considérations spéciales": special_considerations, "Références/Sources": references})
image_html += "</div>"
final_html = f"<div style='display: flex; flex-wrap: wrap; align-items: flex-start; font-family: sans-serif; padding: 10px;'><div style='flex: 1; min-width: 350px; padding-right: 15px;'>{summary}</div>{image_html}</div>"
return final_html, log
# --- Interface Gradio ---
css = ".suggestion-box {border: 1px solid #e0e0e0; border-radius: 5px; padding: 10px; margin: 10px 0; background-color: #f9f9f9;} .suggestion-box h4 { margin-top: 0; margin-bottom: 5px; }"
with gr.Blocks(theme=gr.themes.Default(), css=css) as demo:
gr.Markdown("# PersonaGenAI : Assistant de création de persona marketing")
gr.Markdown("Outil d'aide à la création de personas, intégrant un système d'IA générative (OpenRouter ou OpenAI) pour stimuler la créativité et la réflexivité face aux biais.")
# --- États Globaux ---
app_config_state = gr.State(value={"api_source": None, "text_model": None, "image_generation_enabled": False, "openai_key_provided": False, "openrouter_key_provided": bool(openrouter_api_key)})
bias_analysis_result_state = gr.State(value={})
persona_image_pil_state = gr.State(value=None)
session_log_state = gr.State(value="")
status_message_state = gr.State(value="")
last_refinement_suggestion_state = gr.State(value=None)
# --- Affichage Statut Global ---
status_display = gr.Markdown(value="", elem_classes="status-message")
def update_status_display(new_message, current_log):
if new_message and any(k in new_message for k in ["ERREUR", "WARN", "Configuration"]): current_log = update_log(f"STATUS: {new_message}", current_log)
return new_message, current_log
# --- Onglets ---
with gr.Tabs() as tabs:
# --- Onglet 0 : Configuration API ---
with gr.Tab("🔑 Configuration API", id=-1):
gr.Markdown("### Configuration des clés API")
gr.Markdown("Cet outil utilise un système d'IA. Choisissez votre fournisseur. En l'absence de saisie d'une clé API, un mode par défaut sera utilisé.")
gr.Markdown("**Note :** Si vous avez une clé OpenAI valide, elle sera utilisée pour la génération d'images et de texte. Sinon, OpenRouter sera utilisé pour le texte uniquement (images désactivées).")
if openrouter_api_key: gr.Markdown("✅ Clé API **OpenRouter** trouvée.")
else: gr.Markdown("❌ **Clé API OpenRouter non trouvée.** Mode OpenRouter indisponible sans clé.")
openai_api_key_input = gr.Textbox(label="Clé API OpenAI (optionnelle)", type="password", placeholder="Entrez clé OpenAI pour DALL-E 3 / GPT", info="Si valide: utilisée pour images ET texte. Sinon: OpenRouter (si clé dispo) pour texte.")
configure_api_button = gr.Button("Appliquer la configuration")
api_status_display = gr.Markdown("Statut API : Non configuré.")
def configure_api_clients(openai_key, current_config, current_log):
"""Configure le client API et met à jour l'état."""
openai_key_provided = bool(openai_key); openrouter_key_available = current_config["openrouter_key_provided"]
status_msg = ""; config = current_config.copy(); active_api_client_holder["client"] = None; active_api_client_holder["openai_key"] = None
api_source = None; text_model = None; image_enabled = False; client_to_store = None
if openai_key_provided:
try:
temp_client = OpenAI(api_key=openai_key); temp_client.models.list() # Test
client_to_store = temp_client; active_api_client_holder["openai_key"] = openai_key
api_source = "openai"; text_model = OPENAI_TEXT_MODEL; image_enabled = True
status_msg = f"✅ Config **OpenAI** active (Texte: `{text_model}`, Images: {OPENAI_IMAGE_MODEL} direct)."; config["openai_key_provided"] = True
current_log = update_log("Config: Client OpenAI OK.", current_log)
except openai.AuthenticationError: status_msg = "⚠️ Clé OpenAI **invalide**."; current_log = update_log("ERR Config OpenAI: Clé invalide.", current_log); config["openai_key_provided"] = False; openai_key_provided = False
except Exception as e: status_msg = f"⚠️ Clé OpenAI fournie mais erreur: {str(e)}."; current_log = update_log(f"ERR Config OpenAI: {e}", current_log); config["openai_key_provided"] = False; openai_key_provided = False
elif openrouter_key_available:
try:
temp_client = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=openrouter_api_key)
client_to_store = temp_client; api_source = "openrouter"; text_model = OPENROUTER_TEXT_MODEL
image_enabled = False
status_msg = f"✅ Config **OpenRouter** active (Texte: `{text_model}`)."; config["openai_key_provided"] = False
current_log = update_log("Config: Client OpenRouter OK (Images désactivées).", current_log)
except Exception as e:
status_msg = f"❌ Erreur init OpenRouter: {e}."; current_log = update_log(f"ERR Config OpenRouter: {e}", current_log); client_to_store = None; api_source = None; text_model = None; image_enabled = False; config["openai_key_provided"] = False
else:
status_msg = "❌ Aucune clé API valide disponible/configurée."
client_to_store = None; api_source = None; text_model = None; image_enabled = False; config["openai_key_provided"] = False
active_api_client_holder["client"] = client_to_store
config["api_source"] = api_source; config["text_model"] = text_model; config["image_generation_enabled"] = image_enabled
log_msg = f"Config API. Source: {api_source or 'Aucune'}, Images: {'Actif' if image_enabled else 'Inactif'}."
if "OK." not in current_log.splitlines()[-1]: current_log = update_log(log_msg, current_log)
return config, status_msg, current_log
configure_api_button.click(configure_api_clients, [openai_api_key_input, app_config_state, session_log_state], [app_config_state, api_status_display, session_log_state])
# --- Onglet 1 : Objectif & Analyse Biais ---
with gr.Tab("🎯 Étape 1 : Objectif & analyse biais", id=0):
gr.Markdown("### 1. Définissez l'objectif marketing")
gr.Markdown("Pourquoi créez-vous ce persona ? Le système d'IA analysera l'objectif pour identifier des biais potentiels.")
with gr.Row():
objective_input = gr.Textbox(label="Objectif marketing", lines=4, scale=3)
with gr.Column(scale=1):
gr.Markdown("<small>Suggestions :</small>")
suggestion_button1 = gr.Button("Ex 1 : Service éco urbain", size="sm")
suggestion_button2 = gr.Button("Ex 2 : App fitness seniors", size="sm")
analyze_button = gr.Button("🔍 Analyser l'objectif (biais)")
gr.Markdown("---"); gr.Markdown("### Analyse des biais potentiels")
bias_analysis_output_highlighted = gr.HighlightedText(label="Biais détectés et conseils", show_legend=True, color_map={"BIAS_TYPE":"coral", "EXPLANATION":"lightgray", "ADVICE":"green", "INFO":"blue", "COMMENT":"orange", "ERROR":"red"})
gr.Markdown("---"); gr.Markdown("### 🤔 Réflexion")
user_reflection_on_biases = gr.Textbox(label="Comment utiliser cette analyse ?", lines=2, placeholder="Ex: Attention au stéréotype X...")
log_reflection_button = gr.Button("📝 Enregistrer réflexion", size='sm')
suggestion1_text = "Créer un persona pour promouvoir un nouveau service de livraison écologique destiné aux jeunes professionnels urbains soucieux de l'environnement (25-35 ans)."
suggestion2_text = "Développer une application mobile de fitness personnalisée pour les seniors actifs (+65 ans) cherchant à maintenir une vie saine et sociale."
suggestion_button1.click(lambda: suggestion1_text, outputs=objective_input)
suggestion_button2.click(lambda: suggestion2_text, outputs=objective_input)
analyze_button.click(
fn=lambda: gr.update(interactive=False),
inputs=None,
outputs=[analyze_button]
).then(
fn=analyze_biases,
inputs=[app_config_state, objective_input, session_log_state],
outputs=[bias_analysis_result_state, session_log_state]
).then(
fn=display_bias_analysis,
inputs=bias_analysis_result_state,
outputs=bias_analysis_output_highlighted
).then(
fn=lambda r, l: update_status_display(r.get("overall_comment", "") if "Erreur" in r.get("overall_comment", "") else "", l),
inputs=[bias_analysis_result_state, session_log_state],
outputs=[status_display, session_log_state]
).then(
fn=lambda: gr.update(interactive=True),
inputs=None,
outputs=[analyze_button]
)
def log_user_reflection(r, l): return update_log(f"Réflexion (1): '{r}'", l) if r else l
log_reflection_button.click(log_user_reflection, [user_reflection_on_biases, session_log_state], [session_log_state])
# --- Onglet 2 : Image & Infos Base ---
with gr.Tab("👤 Étape 2 : Image & infos de base", id=1):
gr.Markdown("### 2. Identité visuelle et informations de base")
with gr.Row():
with gr.Column(scale=1):
first_name_input = gr.Textbox(label="Prénom")
last_name_input = gr.Textbox(label="Nom")
age_input = gr.Slider(label="Âge", minimum=18, maximum=100, step=1, value=30)
gender_input = gr.Radio(label="Genre", choices=["Homme", "Femme", "Non-binaire"], value="Homme")
persona_description_en_input = gr.Textbox(label="Contexte image (optionnel, anglais)", lines=1, info="Ex: 'reading book', 'working on laptop'")
with gr.Accordion("🎨 Détails visuels (optionnel)", open=False):
with gr.Row(): skin_color_input = gr.Dropdown(label="Teint", choices=list(skin_color_mapping.keys()), value="") ; eye_color_input = gr.Dropdown(label="Yeux", choices=list(eye_color_mapping.keys()), value="")
with gr.Row(): hair_style_input = gr.Dropdown(label="Coiffure", choices=list(hair_style_mapping.keys()), value="") ; hair_color_input = gr.Dropdown(label="Cheveux (couleur)", choices=list(hair_color_mapping.keys()), value="")
with gr.Row(): facial_expression_input = gr.Dropdown(label="Expression", choices=list(facial_expression_mapping.keys()), value="") ; posture_input = gr.Dropdown(label="Posture", choices=list(posture_mapping.keys()), value="")
with gr.Row(): clothing_style_input = gr.Dropdown(label="Style vêtements", choices=list(clothing_style_mapping.keys()), value="") ; accessories_input = gr.Dropdown(label="Accessoires", choices=list(accessories_mapping.keys()), value="")
reset_visuals_button = gr.Button("Réinitialiser détails", size="sm")
with gr.Column(scale=1):
persona_image_output = gr.Image(label="Image du persona", type="pil", interactive=False)
generate_image_button = gr.Button("🖼️ Générer / Mettre à jour l'image", interactive=False)
gr.Markdown("<small>💡 **Attention :** Les systèmes d'IA générative peuvent reproduire des stéréotypes. Clé OpenAI requise.</small>", elem_classes="warning")
visual_inputs = [skin_color_input, eye_color_input, hair_style_input, hair_color_input, facial_expression_input, posture_input, clothing_style_input, accessories_input]
reset_visuals_button.click(lambda: [""] * len(visual_inputs), outputs=visual_inputs)
def handle_image_generation(*args):
app_config = args[0]; log_state = args[-1]; persona_inputs = args[1:-1]
pil_image, updated_log, error_message = generate_persona_image(app_config, *persona_inputs, log_state)
status_update_msg = ""; info_popup_msg = None
if error_message:
if any(k in error_message for k in ["Veuillez remplir", "désactivée"]): info_popup_msg = error_message
else: status_update_msg = error_message
if info_popup_msg: gr.Info(info_popup_msg)
return pil_image, updated_log, status_update_msg
generate_image_inputs = [app_config_state, first_name_input, last_name_input, age_input, gender_input, persona_description_en_input] + visual_inputs + [session_log_state]
generate_image_outputs = [persona_image_pil_state, session_log_state, status_message_state]
generate_image_button.click(handle_image_generation, generate_image_inputs, generate_image_outputs).then(lambda img: img, persona_image_pil_state, persona_image_output).then(update_status_display, [status_message_state, session_log_state], [status_display, session_log_state])
app_config_state.change(lambda cfg: gr.update(interactive=cfg.get("image_generation_enabled", False)), app_config_state, generate_image_button)
# --- Onglet 3 : Profil Détaillé & Raffinement ---
with gr.Tab("📝 Étape 3 : Profil détaillé & raffinement", id=2):
gr.Markdown("### 3. Complétez les détails du persona")
gr.Markdown("Utilisez '💡' pour obtenir des suggestions du système d'IA afin de nuancer ce champ.")
refinement_suggestion_display = gr.Markdown("*Cliquez sur '💡' à côté d'un champ pour une suggestion.*", elem_classes="suggestion-box")
with gr.Row():
with gr.Column():
gr.Markdown("#### Infos socio-démographiques")
marital_status_input = gr.Dropdown(label="État civil", choices=["", "Célibataire", "En couple", "Marié(e)", "Divorcé(e)", "Veuf(ve)"])
education_level_input = gr.Dropdown(label="Niveau d'éducation", choices=["", "Secondaire", "Bac", "Licence", "Master", "Doctorat", "Autre"])
profession_input = gr.Textbox(label="Profession")
income_input = gr.Number(label="Revenus annuels (€)", minimum=0, step=1000)
gr.Markdown("#### Psychographie")
with gr.Row(equal_height=False): personality_traits_input = gr.Textbox(label="Traits personnalité", lines=2, scale=4); refine_personality_traits_button = gr.Button("💡", scale=1, size='sm')
with gr.Row(equal_height=False): values_beliefs_input = gr.Textbox(label="Valeurs, croyances", lines=2, scale=4); refine_values_beliefs_button = gr.Button("💡", scale=1, size='sm')
with gr.Row(equal_height=False): motivations_input = gr.Textbox(label="Motivations", lines=2, scale=4); refine_motivations_button = gr.Button("💡", scale=1, size='sm')
with gr.Row(equal_height=False): hobbies_interests_input = gr.Textbox(label="Loisirs, intérêts", lines=2, scale=4); refine_hobbies_interests_button = gr.Button("💡", scale=1, size='sm')
with gr.Column():
gr.Markdown("#### Relation produit/service")
with gr.Row(equal_height=False): technology_relationship_input = gr.Textbox(label="Relation technologie", lines=2, scale=4, info="Ex: adopte vite, prudent..."); refine_technology_relationship_button = gr.Button("💡", scale=1, size='sm')
with gr.Row(equal_height=False): product_related_activities_input = gr.Textbox(label="Tâches liées produit/service", lines=2, scale=4); refine_product_related_activities_button = gr.Button("💡", scale=1, size='sm')
with gr.Row(equal_height=False): pain_points_input = gr.Textbox(label="Points de douleur", lines=2, scale=4); refine_pain_points_button = gr.Button("💡", scale=1, size='sm')
with gr.Row(equal_height=False): product_goals_input = gr.Textbox(label="Objectifs avec produit/service", lines=2, scale=4); refine_product_goals_button = gr.Button("💡", scale=1, size='sm')
with gr.Row(equal_height=False): usage_scenarios_input = gr.Textbox(label="Scénarios d'utilisation", lines=2, scale=4); refine_usage_scenarios_button = gr.Button("💡", scale=1, size='sm')
with gr.Accordion("Autres informations (optionnel)", open=False):
with gr.Row():
with gr.Column():
gr.Markdown("#### Contexte pro/quotidien")
with gr.Row(equal_height=False): main_responsibilities_input = gr.Textbox(label="Responsabilités", lines=2, scale=4); refine_main_responsibilities_button = gr.Button("💡", scale=1, size='sm')
with gr.Row(equal_height=False): daily_activities_input = gr.Textbox(label="Activités journalières", lines=2, scale=4); refine_daily_activities_button = gr.Button("💡", scale=1, size='sm')
with gr.Row(equal_height=False): daily_life_input = gr.Textbox(label="Journée type/Citation", lines=2, scale=4); refine_daily_life_button = gr.Button("💡", scale=1, size='sm')
with gr.Column():
gr.Markdown("#### Marketing & considérations")
with gr.Row(equal_height=False): brand_relationship_input = gr.Textbox(label="Relation marque", lines=2, scale=4); refine_brand_relationship_button = gr.Button("💡", scale=1, size='sm')
with gr.Row(equal_height=False): market_segment_input = gr.Textbox(label="Segment marché", lines=2, scale=4); refine_market_segment_button = gr.Button("💡", scale=1, size='sm')
with gr.Row(equal_height=False): commercial_objectives_input = gr.Textbox(label="Objectifs commerciaux", lines=2, scale=4); refine_commercial_objectives_button = gr.Button("💡", scale=1, size='sm')
with gr.Row(equal_height=False): visual_codes_input = gr.Textbox(label="Codes visuels/Marques", lines=2, scale=4); refine_visual_codes_button = gr.Button("💡", scale=1, size='sm')
with gr.Row(equal_height=False): special_considerations_input = gr.Textbox(label="Considérations spéciales", lines=2, scale=4); refine_special_considerations_button = gr.Button("💡", scale=1, size='sm')
with gr.Row(equal_height=False): references_input = gr.Textbox(label="Références/Sources", lines=2, scale=4); refine_references_button = gr.Button("💡", scale=1, size='sm')
def display_refinement_suggestion(suggestion_state):
if suggestion_state:
field_name, suggestion_text = suggestion_state
if "ERREUR:" not in suggestion_text: return f"#### Suggestion pour '{field_name}' :\n\n{suggestion_text}"
else: return "*Erreur lors du dernier raffinement (voir statut/log).*"
return "*Cliquez sur '💡' pour une suggestion.*"
def handle_refinement_request(app_config, fname, lname, age_val, field_name_display, field_val, bias_state_dict, objectives, log_state):
updated_log, result_text, field_name_ctx = refine_persona_details(app_config, fname, lname, age_val, field_name_display, field_val, bias_state_dict, objectives, log_state)
status_update_msg = ""; suggestion_details = None
if result_text:
if "ERREUR:" in result_text: status_update_msg = result_text; gr.Warning(f"Erreur raffinement '{field_name_display}'. Voir log.")
else: suggestion_details = (field_name_display, result_text)
else: gr.Warning(f"Pas de suggestion pour '{field_name_display}'.")
return updated_log, status_update_msg, suggestion_details
def create_refine_handler(f_name, i_comp): return lambda app_c, fn, ln, age, f_val, bias_s, obj, log_s: handle_refinement_request(app_c, fn, ln, age, f_name, f_val, bias_s, obj, log_s)
common_ref_inputs = [app_config_state, first_name_input, last_name_input, age_input]
state_ref_inputs = [bias_analysis_result_state, objective_input, session_log_state]
refine_handler_outputs = [session_log_state, status_message_state, last_refinement_suggestion_state]
refine_buttons_map = {
refine_personality_traits_button: ("Traits personnalité", personality_traits_input), refine_values_beliefs_button: ("Valeurs, croyances", values_beliefs_input),
refine_motivations_button: ("Motivations", motivations_input), refine_hobbies_interests_button: ("Loisirs, intérêts", hobbies_interests_input),
refine_technology_relationship_button: ("Relation technologie", technology_relationship_input), refine_product_related_activities_button: ("Tâches liées", product_related_activities_input),
refine_pain_points_button: ("Points de douleur", pain_points_input), refine_product_goals_button: ("Objectifs produit", product_goals_input),
refine_usage_scenarios_button: ("Scénarios utilisation", usage_scenarios_input), refine_main_responsibilities_button: ("Responsabilités", main_responsibilities_input),
refine_daily_activities_button: ("Activités journalières", daily_activities_input), refine_daily_life_button: ("Journée type/Citation", daily_life_input),
refine_brand_relationship_button: ("Relation marque", brand_relationship_input), refine_market_segment_button: ("Segment marché", market_segment_input),
refine_commercial_objectives_button: ("Objectifs commerciaux", commercial_objectives_input), refine_visual_codes_button: ("Codes visuels/Marques", visual_codes_input),
refine_special_considerations_button: ("Considérations spéciales", special_considerations_input), refine_references_button: ("Références/Sources", references_input),
}
for btn, (label, input_comp) in refine_buttons_map.items():
btn.click(
fn=create_refine_handler(label, input_comp), inputs=common_ref_inputs + [input_comp] + state_ref_inputs, outputs=refine_handler_outputs
).then(update_status_display, [status_message_state, session_log_state], [status_display, session_log_state]
).then(display_refinement_suggestion, [last_refinement_suggestion_state], [refinement_suggestion_display])
# --- Onglet 4 : Résumé Persona ---
with gr.Tab("📄 Étape 4 : Résumé du persona", id=3):
gr.Markdown("### 4. Visualisez le persona complet")
summary_button = gr.Button("Générer le résumé")
summary_content = gr.Markdown(elem_classes="persona-summary", value="Cliquez sur 'Générer'...")
all_summary_inputs = [persona_image_pil_state, first_name_input, last_name_input, age_input, gender_input, persona_description_en_input, skin_color_input, eye_color_input, hair_style_input, hair_color_input, facial_expression_input, posture_input, clothing_style_input, accessories_input, marital_status_input, education_level_input, profession_input, income_input, personality_traits_input, values_beliefs_input, motivations_input, hobbies_interests_input, main_responsibilities_input, daily_activities_input, technology_relationship_input, product_related_activities_input, pain_points_input, product_goals_input, usage_scenarios_input, brand_relationship_input, market_segment_input, commercial_objectives_input, visual_codes_input, special_considerations_input, daily_life_input, references_input, session_log_state]
summary_button.click(generate_summary, all_summary_inputs, [summary_content, session_log_state])
# --- Onglet 5 : Journal de Bord ---
with gr.Tab("📓 Journal de bord", id=4):
gr.Markdown("### Suivi du processus")
gr.Markdown("Historique des actions, réflexions et erreurs.")
log_display_final = gr.Textbox(label="Historique session", lines=20, interactive=False, max_lines=MAX_LOG_LINES)
download_log_button = gr.DownloadButton(label="Télécharger journal", visible=False)
export_log_button_final = gr.Button("Préparer export journal")
session_log_state.change(fn=lambda log: log, inputs=session_log_state, outputs=log_display_final)
def prep_log_dl(log):
if not log: return gr.update(visible=False)
try:
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt', encoding='utf-8') as tf: tf.write(log); fp = tf.name
print(f"Log prêt: {fp}"); return gr.update(value=fp, visible=True)
except Exception as e: print(f"Err création log DL: {e}"); return gr.update(visible=False)
export_log_button_final.click(prep_log_dl, session_log_state, download_log_button)
# --- Lancement App ---
if not openrouter_api_key: print("\n"+"="*60+"\nWARN: Clé OpenRouter manquante. Fonctionnement limité à OpenAI si clé fournie.\n"+"="*60+"\n")
initial_api_status = "Statut API : Non configuré."
if openrouter_api_key:
print("Clé OR trouvée, config initiale...")
try:
initial_config, initial_api_status, initial_log = configure_api_clients(None, app_config_state.value, "")
app_config_state.value = initial_config; session_log_state.value = initial_log
print(initial_api_status); api_status_display.value = initial_api_status
except Exception as init_e: print(f"ERR config initiale OR: {init_e}"); initial_api_status = f"❌ Err config initiale OR: {init_e}"; api_status_display.value = initial_api_status
demo.queue().launch(debug=False, share=False, pwa=True) |