Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pickle
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Load all the models
|
6 |
+
with open('random_forest_model.pkl', 'rb') as file:
|
7 |
+
random_forest_model = pickle.load(file)
|
8 |
+
|
9 |
+
with open('logistic_model.pkl', 'rb') as file:
|
10 |
+
logistic_model = pickle.load(file)
|
11 |
+
|
12 |
+
with open('knn_yelp_model.pkl', 'rb') as file:
|
13 |
+
knn_yelp_model = pickle.load(file)
|
14 |
+
|
15 |
+
with open('svm_linear.pkl', 'rb') as file:
|
16 |
+
svm_linear = pickle.load(file)
|
17 |
+
|
18 |
+
with open('svm_poly.pkl', 'rb') as file:
|
19 |
+
svm_poly = pickle.load(file)
|
20 |
+
|
21 |
+
with open('svm_rbf.pkl', 'rb') as file:
|
22 |
+
svm_rbf = pickle.load(file)
|
23 |
+
|
24 |
+
# Store models in a dictionary for easy access
|
25 |
+
models = {
|
26 |
+
"Random Forest": random_forest_model,
|
27 |
+
"Logistic Regression": logistic_model,
|
28 |
+
"KNN": knn_yelp_model,
|
29 |
+
"SVM Linear": svm_linear,
|
30 |
+
"SVM Polynomial": svm_poly,
|
31 |
+
"SVM RBF": svm_rbf
|
32 |
+
}
|
33 |
+
|
34 |
+
# Function to predict class probabilities
|
35 |
+
def predict_class_probabilities(review_text, model_name):
|
36 |
+
# Convert review text to the format the model expects (using vectorizer)
|
37 |
+
# Assuming you have a vectorizer stored as 'vectorizer.pkl'
|
38 |
+
with open('vectorizer.pkl', 'rb') as file:
|
39 |
+
vectorizer = pickle.load(file)
|
40 |
+
|
41 |
+
# Transform the review text into a vector
|
42 |
+
review_vector = vectorizer.transform([review_text])
|
43 |
+
|
44 |
+
# Select the model based on user input
|
45 |
+
model = models.get(model_name)
|
46 |
+
|
47 |
+
if model:
|
48 |
+
# Predict class probabilities
|
49 |
+
prob = model.predict_proba(review_vector)
|
50 |
+
return prob
|
51 |
+
else:
|
52 |
+
return "Model not found."
|
53 |
+
|
54 |
+
# Gradio Interface
|
55 |
+
interface = gr.Interface(
|
56 |
+
fn=predict_class_probabilities,
|
57 |
+
inputs=[
|
58 |
+
gr.Textbox(label="Enter your review", placeholder="Type a review here..."),
|
59 |
+
gr.Dropdown(
|
60 |
+
label="Select a Model",
|
61 |
+
choices=["Random Forest", "Logistic Regression", "KNN", "SVM Linear", "SVM Polynomial", "SVM RBF"]
|
62 |
+
)
|
63 |
+
],
|
64 |
+
outputs="json",
|
65 |
+
live=True
|
66 |
+
)
|
67 |
+
|
68 |
+
# Launch the interface
|
69 |
+
interface.launch()
|