import gradio as gr import numpy as np # Define input components for housing price prediction input_module1 = gr.Slider(minimum=500, maximum=5000, step=100, label="Square Footage") # Slider for square footage input_module2 = gr.Slider(minimum=1, maximum=10, step=1, label="Number of Bedrooms") # Slider for number of bedrooms input_module3 = gr.Dropdown(choices=["Urban", "Suburban", "Rural"], label="Location") # Dropdown for location input_module4 = gr.Checkbox(label="Has Garden") # Checkbox for garden input_module5 = gr.Checkbox(label="Has Garage") # Checkbox for garage # Define output components output_module1 = gr.Textbox(label="Predicted Price") # Textbox for predicted price output_module2 = gr.Textbox(label="Prediction Explanation") # Textbox for explanation # Function for housing price prediction (simulate with random values) def predict_price(square_footage, num_bedrooms, location, has_garden, has_garage): price = square_footage * 200 + num_bedrooms * 50000 # Simplified formula if location == "Urban": price *= 1.5 if has_garden: price += 20000 if has_garage: price += 15000 explanation = f"Based on {square_footage} sqft, {num_bedrooms} bedrooms, location {location}, garden: {has_garden}, garage: {has_garage}, the predicted price is ${price:.2f}." return f"${price:.2f}", explanation # Launch the Gradio interface for housing price prediction gr.Interface(fn=predict_price, inputs=[input_module1, input_module2, input_module3, input_module4, input_module5], outputs=[output_module1, output_module2]).launch()