from config import model from mmcv import Config from mmdet.models import build_detector import torch def main(): print(f"Model type: {model['type']}") detector = build_detector(model, train_cfg=model.get('train_cfg'), test_cfg=model.get('test_cfg')) detector.eval() print(detector) dummy_input = torch.randn(1, 3, 800, 1333) with torch.no_grad(): output = detector.forward_dummy(dummy_input) print("Forward output:", output) if __name__ == "__main__": main()